Kaunas University of Technology

Department of Information Systems

Creating UML&OCL Models from SBVR

Business Vocabularies and Business Rules

VeTlS User Guide

Kaunas, 2009

Lithuanian State Science and Studies Foundation High Technology Development
Program Project “Business Rule Solutions for Information Systems Development
(VeTIS)" (Reg.No. B-07042)

Table of Contents

VISION: FROM NATURAL LANGUAGE TO UML / OCL MODELS.........cccvvneeeennnn. 3
BRIEF INTRODUCTION TO SBVR ... 4
VETIS TOOL — WHAT, WHERE AND HOW? ...vreiiiieeeeee e 6
SBVR EXPRESSIONS IN STRUCTURED ENGLISHvvniiiiiiiiciiieciiceee e 7
DEFINING BUSINESS VOCABULARY WITH VETIS TOOL ..ccuvvvnviiiiiiciicciceeee 10
DEFINING BUSINESS RULES WITH VETIS TOOL ...ccvviiiiiiiiiiiiiceee e 18
TRANSFORMING THE BUSINESS VOCABULARY INTO UML CLASS MODEL......... 19
TRANSFORMING BUSINESS RULES INTO UML CLASS MODELcccvuvivieeinnnens 24
TRANSFORMING BUSINESS RULES INTO OCL CONSTRAINTS ...cvuviiviieiiineeanns 26
DEVELOPMENT PROCESS BASED ON SBVRoiiiiiii e, 30
WORKING WITH THE VETIS EDITORccvviiiiieiiiiie e et eeee 41
VETIS INSTALLATION AND CONFIGURATIONccvvuuneeeeiiiieeeeeentneeeeeesnnnneeeeeenns 45
CONCLUDING REMARKS FOR VETIS USERSiiviiiiiieccii e 46
REFERENCEScttuuiieiiiittie e e e ettt e e e e e et e e e e e e et e e e e eeata e eeeeesaaaeeeeessnnaaaeeenes 47
APPENDIX A. AN EXAMPLE OF THE SBVR BUSINESS VOCABULARY 48
APPENDIX B. EXAMPLE OF THE GENERATED UML CLASS DIAGRAM................ 53
APPENDIX C. ABOUT THE DEVELOPERS OF THE VETIS TOOLcccvvvvniiinean, 54

2|Page

Vision: from Natural Language to UML / OCL Models

The vision of OMG “Semantics of Business Vocabulary and Business Rules” (SBVR)
standard is expressing business knowledge in controlled natural language
unambiguously understandable by human and computer systems. Such knowledge is
captured by business experts / information system analysts who need tools that would
allow storing SBVR specifications in MOF repositories for interchanging and linking
them with other models based on MOF (e.g. UML&OCL models). SBVR is fully
integrated into the OMG’s Model-Driven Architecture (MDA) (Fig. 1).

SBVR
| uw Business Model {CIM}
0 | L
8= 2 3 ity Other aspects of Business Model
c B @ /| specification 1 I 1"
w o - S I [l
o O C I
o }D g 5 ransformation
- v Platform Independent Model (PIM)
Platform Specific Model (PSM)

Fig. 1. SBVR position in MDA [2]
The purpose of VeTIS tool is to support transformation SBVR - UML&OCL. It was
implemented on the Eclipse 3.4.1 platform on the basis of SBVR 1.0 and UML 2.1.2
metamodels (in XMI format), ATL transformation language 3.0.0 and ATL

transformation engine 3.0.0. VeTIS user interface was adapted from SBeaVeR tool [3].

3|Page

Brief Introduction to SBVR

“Semantics of Business Vocabulary and Business Rules” (SBVR) is an OMG
specification for expressing business knowledge in the language that is primarily
understandable to the business people. One can state that SBVR is aimed at
helping business people understand models with no special knowledge in modeling
notations or IT skills.

The most common way of expressing business vocabularies and business rules is by
using textual specifications rather than some diagrams. While diagrams are helpful
when one needs to see how business concepts are related, they are not well suited for
defining vocabularies and expressing rules. SBVR uses controlled natural language

(e.g. English) for business model specification.

SBVR realizes the core principle of the Business Rules Approach at the business
level, so called business rules “mantra” that has been introduced by Business Rules
Group in 1995. This principle can be abbreviated as follows:

“Business rules are based on facts, and facts are based on terms”.

Following the business rules “mantra”, SBVR introduces its basic elements:
— anoun concept (individual concept, object type (i.e. general concept) or role);

— a fact type, which denotes some type of relationship between two or more
noun concepts (e.g. “person owns account”), or a characteristic of the noun

concept (e.g. “person is reliable”);

— a business rule, which is defined as a rule that is under business jurisdiction.
Business rules are formulated as necessities, possibilities, permissions,
prohibitions or obligations related to fact types. For example, the rule “It is
necessary that a person owns at most 5 accounts” is based on the fact type

“person owns account”,

SBVR organizes business knowledge into vocabularies. There are two meta-models
defined in the form of vocabularies in the SBVR specification:

— Vocabulary for Describing Business Vocabularies. A business vocabulary
is defined to contain “all the specialized terms and definitions of concepts that a

4|Page

given organization or community uses in their talking and writing in the course
of doing business” [1];

Vocabulary for Describing Business Rules, which is built on the Vocabulary
for Describing Business Vocabularies and deals with the specification of the

meaning of business rules.

What SBVR is and is NOT

It is about and for the business, not information system (IS). However, SBVR
defines business knowledge that can be used in information systems

development;
It is from the business perspective, not from the IS perspective;

It uses natural language used by business people; it has no reference to any
IS constructs and is independent of any IS design. However, SBVR
propagates the use of structured, well defined natural language that can be
transformed into IS design decisions;

It is created and maintained by business people, and not IT people. However,
IT people are able to understand SBVR specifications as well, therefore, they

could manage SBVR business vocabularies and business rules if required.

5|Page

VeTIS Tool —What, Where and How?

WHAT is VeTIS tool?

VeTIS tool is an SBVR-compliant plug-in
for the CASE tool MagicDraw UML, but

also it can be used as a standalone tool.

The wuser interface of VeTIS was
developed on the basis of SBeaVeR an
Eclipse plug-in, which was a part of the

Digital Business Ecosystem project [2].

WHERE to use VeTIS tool?

VeTIS tool is used for the definition of
Business Vocabularies and Business
Rules using controlled natural language (a
subset of English language) and for
transformation of SBVR specifications into
UML class

constraints.

diagrams with OCL

HOW to use VeTIS tool?

Basic scenario of working with the VeTIS

tool is shown in Figure 2.

?

Launch MagicDraw
UML CASE tool

<

Start existing Start new UML
UML project project

{ < J
|

Launch VeTIS plugin
from MagicDraw UML

]

Specify Business
vocabulary and
Business rules (SBVR)

l

Perform the
"SBVR to UML+0OCL"™
transformation

l

Continue working
with MagicDraw UML

B!
®

Fig. 2. Working with the VeTIS tool: basic

scenario

One can launch the MagicDraw UML tool, launch VeTIS editor from MagicDraw UML

menu and specify terms and fact types in Business Vocabulary. Having all necessary

terms and fact types you will be able to define business rules in Business Rules

Vocabulary and to transform the overall specification into UML class diagram with OCL

constraints.

6|Page

SBVR Expressions in Structured English

Font styling for the SBVR Structured English

Four types of font styles are used for specifying business terms, fact types and

business rules in the SBVR-based Structured English:

Font Description

The “term” font is used to represent object types (general
concepts) and roles. Terms are defined in singular form using
lower case letters.

Examples: car, driver, loan, modal formulation, fact type etc.

—
D
=
3

The “Name” font is used to represent individual concepts that
usually are proper nouns. The first letter of a name is
capitalized. One of the exceptions to the Ilatter is the
presentation of numerical values that are also shown in this
style (e.g. 25).

Examples: Lithuania, Kaunas, USA, 200 etc.

Note: The “Name” font used by VeTIS tool slightly differs from
the original SBVR notation and looks like this: Lithuania.

The “verb” font is used to represent a verb, a preposition, or a
combination of these two. Verbs are used in singular active or
passive forms — these two are used as synonymous forms. For
example, for the active form of an associative fact type “driver
drives car” there is a synonymous passive form “car is driven
by driver”. Fact types, representing characteristics, are always
used in passive form, e.g. “car is damaged”.

Note: In VeTIS tool, you should hyphen combinations of words
playing the roles of verbs, terms or Names, e.g.: is_driven_by,
approved_order, Lithuanian_Republic.

verb

The “keyword” font represents linguistic symbols that are
used to construct statements and definitions.

keyword Examples: each, It is obligatory that, greater than, “ ” etc.

Note: combinations of words representing keywords usually
have no hyphens.

7|Page

Keywords and phrases for logical formulations

Keywords and phrases are used to express logical formulations. The letters “n” and

“m” represent integers, and “p” and “q” — expressions of propositions.

Quantification

each

at least one

at least n

at most one

at most n

exactly one

exactly n

at least n and at most m

universal guantification
existential quantification
at-least-n quantification
at-most-one quantification
at-most-n quantification
exactly-one guantification
exactly-n quantification
numeric range quantification

Logical operations

not p
p and g
porq

logical negation

conjunction
disjunction

Modal operations

it is obligatory that p
it is necessary that p
it is possible that p

it is permitted that p

obligation formulation
necessity formulation
possibility formulation
permissibility formulation

Other keywords

Keyword Description

1. Used with a general concept to make a reference to a previous
the use of the same concept;

2. Introduction of the name of an individual thing or of a definite

description.
a, an Universal or existential quantification

When used after a noun concept and before a fact type symbol,
that .) S

this keyword introduces some restriction on that noun concept.
not Used within an expression to introduce a logical negation.

8|Page

Phrases having predefined meaning in VeTIS

Phrase

Description

Is_greater_than
is_not_greater_than
is_less_than

is_not_less_than

equals

Used for comparisons in logical formulations

is_a
specializes
generalizes
is_category_of

is_of category

Used for categorization fact types

Is_included_in

includes

Used for partitive fact types

has

Is_property_of

Used for is_property of fact types

9|Page

Defining Business Vocabulary with VeTIS Tool

What is Business Vocabulary?

According to the SBVR specification, a business vocabulary “contains all the
specialized terms, names, and fact type forms of concepts that a given organization or

community uses in their talking and writing in the course of doing business” [1].

Describing Business Vocabulary

A business vocabulary is described by the vocabulary’s name and several optional
fields that are presented below.

Field Description
Vocabulary name The “Name” font is used to present the vocabulary name.
Description: The scope and purpose of the vocabulary is presented in

the “Description:” field.

The “Source:” field presents a glossary or any other

Source: formally-defined document, which is independent of the
vocabulary being described and is used as a basis for
that vocabulary.

_ The “Speech Community:” field is used to present the
Speech Community: gpeech community that controls and is responsible for the

vocabulary.

The “Language:” field is used to name the language that
Language: is the basis of the vocabulary. By default, English is

assumed.

The “Included Vocabulary:” field indicates that another
vocabulary is fully incorporated into the vocabulary being

Included Vocabulary: described. All the entries of the included vocabulary
become a part of the vocabulary being described.

Note. Currently this option is not supported in VeTIS.

Note: The “Note:” field is used to present any other notes that
do not fit under the other captions.

10| Page

Business Vocabulary Entries

Business vocabulary has glossary-like entries that specify concepts having

representations in the vocabulary. Each entry is for a single concept.

Each vocabulary entry starts with a primary presentation, which denotes a name of the
concept. Additionally, a concept can be defined by other optional fields that are

presented in the skeleton of a vocabulary entry below.

Field Description

A primary representation of an entry can be a term, a
primary presentation name, or a fact type form (in SBVR, fact type form is the
representation for a fact type).

A definition is understood as an expression that defines the
o primary representation. A definition can be formal, partly
Definition: formal or informal.

Formal definitions are in SBVR-styled text, and informal
definitions are unstyled.

The *“Source:” field is used to indicate the source
vocabulary or document for a concept. Keyword phrase

Source: “based on” can be used in this field to indicate that the
definition of the concept is derived from the given source
but now has some modifications.

Dictionary Basis: This field presents a definition from a common dictionary
that supports the use of the primary representation.

General Concept; The “General Concept:” field can be used to present a
concept that generalizes the entry concept.

The “Concept Type:” field is used to specify the type of the

Concept Type: entry concept when the type of the concept is not obvious
from the primary representation (e.g. a Name indicates an
Individual concept, a Term — object _type etc.).

The “Necessity:” or “Possibility:” field is usually used to
supplement a definition. A “Necessity” states something
that is necessarily true — the necessary conditions for the
existence of the concept. A “Possibility” states something
that is possible and not prevented by definition.

Typical keyword phrases “it is necessary that” and “it is
possible that” can be omitted from a statement because it
is implied by the field itself.

Necessity:

Possibility:

The “Reference Scheme:” field shows structuring of things
Reference Scheme: denoted by the concept. It defines the sufficient conditions
for the existence of the concept.

l1|Page

Note: Some explanatory notes that do not fit within other captions
may be presented in the “Note:” field.

Example: Some examples involving the entry concept may be
presented in the “Example:” field.

A synonym is another designation of the same concept that

Synonym: can be substituted for the primary representation.
Synonyms represent the same concept. Individual
concepts and object types may have synonyms.

A synonymous form is a fact type form for the same fact
Synonymous Form: type. E.g. “customer buys book” and “customer purchases
book” are two synonymous forms for the same fact type.

The “See:” field is used when the primary representation is
See: not the preferred representation for the entry concept. The
“See:” field introduces the preferred representation.

Defining Concepts in a Business Vocabulary

There are five basic concept types that can be presented in a Business vocabulary

using VeTIS tool:
— Object type (or general concept);
— Individual concept;
— Fact type (or verb concept);

— Role.

An object type is a noun concept that classifies things on the basis of their common

properties.

An object type is presented in the “Term” font and starts with a small letter. A
vocabulary entry for an object type can be additionally specified using the description
fields presented above. Some examples of the object type entries:

~'loan
Concept type: ohject type

“real estate
Definition: property consisting of houses and land
Synonym: asset
Syvnonyio: bullding

“parcel
General concept: real estate

12| Page

Note that the field “Concept_type:” in the vocabulary entry “loan” is not necessary
because the system interprets the concept as an object type by default (like in the
“real estate” case), if no other specifications are applied.

An individual concept is a concept that corresponds to only one object (thing).

An individual concept is presented in the “Name” font and can be additionally specified

using description fields presented above:

ithuani
Lithuanlia

Note that the field “Concept_type:” in the vocabulary entry “Lithuania” is not necessary
because the name of the concept starts with a capital letter, which indicates the
concept being an individual concept.

A fact type is a concept that denotes some type of relationship between two or more

noun concepts or a characteristic of the noun concept.

Following the definition, fact types are defined using the existing noun concepts (object
types or individuals), which have already been defined in the business vocabulary.
Verbs represent fact types creating relationships between these nouns or specifying
their characteristics. Verbs are presented in the “verb” font. A simple example of the

fact type:
bank gives loan

The given example is a sentential form of the fact type. Sentential forms may be
active or passive (the previous example presents a fact type in an active form). Fact
types may also be in noun forms. The following examples illustrate fact type in its

passive and noun forms:

loan is given by bank — passive form for the fact type “bank gives loan”;

loan of fFhe bank — noun form for the same fact type (nhoun form is

identified by the verb phrase “of_the”).

Note that all these forms are synonymous forms of one and the same fact type “bank

gives loan™:

13|Page

bank gives loan

Synonymous form: loan is given by bank

Syvnonymous form: loan of the bank

Mostly, noun forms of fact types are used in business rules statements.

That is not all about the fact types. There’s a classification for the fact types. Let us
introduce it with some examples made with the VeTIS tool:

Associative fact type

An associative fact type is the most common fact type that has two or more roles
involved (VeTIS supports only two roles for associative fact types). Usually, there
are two noun concepts playing specific roles in the relationship defined by the
associative fact type. Only in the case of a recursive relationship, there is one noun

concept playing both roles.

bank checks relisbility of loan

debtor gets loan

_form: loan i;_goﬁ_by debtor

= form: loan of the debtor
Synonymous form: debtor that gets that loan

debtor regnests loan

Associative fact type is identified by a verb or a verb phrase, which is not reserved
for other types of fact types.

Partitive fact type

Partitive fact type is a binary fact type stating that one noun concept (all of its

instances) is in the composition of a given whole, i.e. another noun concept.
account is included in bank

branch is included in parent bank

Synonymous form: parent bank includes branch

Partitive fact types are identified by the verb phrases “includes” and “is_included_in”

(for active and passive forms respectively).

Is_property_of fact type

Is_property_of fact type defines an essential quality of a given noun concept.

l4|Page

loan has regquest date

rm: return date of the loan

rm: return date 1s propsrty of loan

Is_property_of fact types are identified by the verb phrases “has” and

“is_property_of” (for active and passive forms respectively).

Categorization fact type

Categorization fact type is a fact type that represents relationship between the more
general noun concept and another (more specific) noun concept, which is a category

of the first concept.

With VeTIS tool, one can specify simple categorization fact types, for example:

accepted loan 1s category of loan

rejected loan i;_sategarg_of loan

Note that such simple categorization fact types can also be represented in noun
concept entries with additionally specified “General_concept:” fields indicating the

more general concepts of those noun concepts:

Simple categorization fact types are identified by the following pairs of verbs and
verb phrases: “specializes” and “generalizes”, “is_category of” and “is_of category”,
“is_a” and “is_a” (VeTIS interprets is_a as a relationship between a specific concept
and the general concept, and creates the synonymous form with the verb phrase

is_a between the general concept and the specific concept by default).

More complex structures involving categorization types and categorization schemes

are also supported by VeTIS:

loan status type

15|Page

Categorization scheme is a set of categories that subdivides instances of a general
concept into subsets specialized by some feature (categorization type). Note that the
above-shown structure of the vocabulary entries for the categorization type,
categorization scheme and specialized noun concepts is predefined and
mandatory, if you want to specify the complete and correct information about a

categorization scheme.

A specialized case of a categorization scheme is segmentation. Segmentation is a
categorization scheme whose contained categories comprise complete set of
categories (with respect to the general concept), and sets of objects belonging to
these categories are disjoint. Vocabulary entry for segmentation has a structure

analogous to categorization scheme:

Loan=s by =status Type

m
m [
1L
1L
I
C
I
m
o
m
i
it
1}
it
II
[}
i
'-
G
H
]
]
i
]
t]
a1}
£
A
]
Li
m
(W}
it
I
[}
1}
i
1
1

subdivides loan by loan sStatus type

Changing the meaning of a predefined verb. If you want to use the verb phrase
reserved for the some category of fact type in a fact type of a different type, specify
that type of the fact type in the “Concept_type:” field. VeTIS will ignore the default
meaning of the verb for this particular vocabulary entry. In the following example, fact
type will be interpreted as an associative fact type even though the verb “has” is
reserved for the is_property_of fact types:

e = _ I
Ccank nas cCcount

“oncent tune - ~i1atilve f--ﬂ— e

______ gt type: associative

A role is a noun concept that corresponds to things based on their playing a part,

assuming a function or being used in some particular situation.

A role is always understood with respect to actualities of a particular fact type or to
other particular situations. For example, let us assume the role “owner” — this is the
role played by a person in the particular fact type that is also specified in the business

vocabulary:

16| Page

“lowner
Concept type: role
General concept: person

“owner owns real estate
Synonymous form: real estate is owned bY oWher

A role is identified by the vocabulary entry, which has the field “Concept_type:” set to
“role”, and the “General_concept:” field set to the object type, which plays that role in
the corresponding fact type. Roles having predefined elementary object types text,

integer and number as their general concepts are used in is_property of fact types:

“laccount number
Concept type: role
General concept: LEXT

“laccount kas account nurber
Synonymous form: account number oFf tke qocount
Synonymous form: account nuwnber is_propertg_of acCcount

Note. It is unnecessary to define “Concept type: role” for roles that are used in

Is_property_of fact types, i.e.:
Taccount

“account nuber
General concept: Lext

“account kas account manber

17|Page

Defining Business Rules with \VeTIS Tool

According SBVR, business rules are rules under business jurisdiction. Business rules
are constructed as closed modal formulations that have recursively embedded logical

formulations and are based on fact types. Modal formulations are:

— Alethic modal formulations, i.e. necessities, possibilities or impossibilities used

in structural business rule statements expressing structural business rules;

— Deontic modal formulations, i.e. obligations, permissions or prohibitions used in

operative business rule statements expressing operative business rules.

Structural Business Rule: These are rules about how the business chooses to
organize (i.e., “structure”) the things it deals with. Structural Rules are constraints and

derivations, and supplement definitions.

Operative Business Rule: These are rules that govern the conduct of business
activity (dynamic or action rules). In contrast to Structural Rules, Operative Rules can
be directly violated by people involved in the affairs of the business.

VeTIS supports four types of business rules (you can define impossibilities and
prohibitions using remaining types of rules):

Necessities:
1 loan owns exactly one bail.
Possibilities:
a debtor gets at most 3 loan.
Permissions:
w debtor reguests a loan.
Obligations:
t bank gives a loan

he loan is_a valid loan

loan 1s & reliable loan.

You can find more information about defining business rules in the upcoming sections.
Keywords and phrases for logical formulations and predefined fact types are

presented in the section “SBVR Expressions in Structured English”.

18| Page

Transforming the Business Vocabulary into UML Class

Model

One of the core features of the VeTIS tool is the transformation of the business

vocabulary and business rules into the UML Class model.

VeTIS ATL Transformation MagicDraw UML
Editor Engine Graphical Interpreter

VeTIS SBVR
Specification I
Generate Transform Create UML
| SBVR XMI Schema r‘ SBVR2UMLOCL }‘l ﬁ Visual Model
,I

SBVR XMI UML XMI Schema l\!'_:l UMLEOCL
Schema /OCLExpressions Visual Model

Fig. 3. Transforming SBVR specifications to UML&OCL models

Let us demonstrate basic transformation rules with some examples.

Transformation of the Vocabulary

Business Vocabulary along with Business Rules is transformed into a UML package,
while vocabulary name is transformed into a package name concatenated with the
phrase “_imported”. Two elements are included in that newly created package:
“VeTIS” profile that supports visualization of constraints in UML class diagrams, and
“Constraints” package for holding OCL constraints obtained from SBVR. “VeTIS”
profile includes single stereotype <<constrained>>, base metaclass of which is

“Element”, so it is applicable for classes, operations and other UML elements.

= LoanContracts E}E oanZonkracks_impotted
,ﬁ LoanCantracts.rules }‘ Felations
¥ LoanCantracts.voc = D Conskraints
.H LoanContracks, vor_head YeTlS

Transformation of an object type

Object type is transformed into a UML class holding the same name as the object

type:

= loan

|:> Loan

19|Page

Transformation of an associative fact type

Associative fact type is transformed into an association relationship between two
classes. Associative fact type involves two roles of object types whose names
become names of the ends of properties corresponding to the ends of that
association. A verb (or a verb phrase) used by the fact type becomes a name of that
association. If there are no business rules constraining the number of occurrences of

instances of a fact type, multiplicity bounds of the association are set to “0..*” by

default.
Person
“:Ef’ﬂ:" person |0..*
= requests
persSon r-quests 1oan {oan D_.‘
Loan

Object types may play particular roles in associative fact types. In such a case, the
names of these roles map to the names of properties corresponding to the ends of

the association:

Person

debtor (0..*

t_type: role = requests

Transformation of is_property_of fact type

Is_property_of fact type is transformed into an attribute of a class. A general concept
describing some property of another general concept is specified by a vocabulary
entry having the “Concept_type:” field set to “role” and “General_concept:” — to some
data type. A data type specifies what kind of data that property of a business object

(general concept) represents:

20|Page

“PpEL3On

peraonal number

General concept: 1nteger
Person
1 B |:> personalNumber : Integer
N name : String
1] 11 I Lext

pErson h4s nAame
Synonymous_form: name is property of person

person has personal number

Transformation of a characteristic fact type

Characteristic (fact type having only one role) is transformed into an attribute of the

Boolean type:

. Loan
loan 2s returned = isReturned : Boolean

Transformation of a partitive fact type

Partitive fact type is transformed into a composition relationship between two

classes in an analogous way:

Bank
bankCode : String

“bank
“account bank [0.*
E> isincludedin
account 0.
“account 1Is included In bank s
- - Account

accounthlumber : String

In the following example of a partitive fact type, the fact type holds two specific roles
(“parent_bank” and “branch”) of the single general concept “bank”. This fact type is
transformed into the recursive composition (note that both roles ranging over the

same object type are possible for associative fact types as well):

21| Page

o e v -branch
-Oncept_Ltype: Iole Bank =
General concept: bank 0.
=“branch
Concept type: role = parentBank 10.*
zeneral concept: bank
isincludedin

“branch is includsd in parent bank

Transformation of a categorization fact type

Categorization fact type is transformed into a generalization relationship between

two classes:

Loan
Zloan
“accepted loan = T
“accepted loan is category of loan AcceptedLoan

VeTIS makes transformations of more complex SBVR constructions involving
categorization types and schemes as well. In the following example, a generalization
set involving the superclass “Loan”, two subclasses “AcceptedLoan” and
“RejectedLoan” as well as the class “LoanStatusType” representing a powertype is
created in MagicDraw UML from the categorization scheme specified in a business

vocabulary:

= loan

Definition: the temporary provision of money

“loan status type

Concept type: categorization type

Hecessity: i;_for general concept loan

“Loans by status type

Hecessity: categorization scheme for general concept loan tha
subdivides loan by loan status type

it

al concept: loan
=

ssity: 15 included in Loans by status type

al concept: loan
=

ssity: 1s included in Loans by Status type

4

22| Page

Loan

tincomplete, disjoirt} fincomplete, disjoirt}
‘LoanStatusType :LuanS‘tatuIsT'g.rpe

RejectedLoan AcceptedLoan LoanStatus Type

Note that in cases where segmentation is used instead of categorization scheme
generalization relationships are generated with the {complete, disjoint} constraints
instead of the {incomplete, disjoint} as shown in the previous example where the
categorization scheme was used.

loan urgency type

Concept type: categorization type
Necesajicy: lE_fOI.' general concept loAan

Loans by loan urgency type

sagmeantation for gensral concept loan that

subdivides loan by loan urgency type

inscant loan
seneral concept: loan
Necessity: is included in Loans by loan urgency type

regular loan
General concept: loan
Nec 15 included in Loans by loan urgency Lype

g

LoanUrgencyType

Loan

‘:Fcomplete, disjoint }

LoanUrgency Type
RegularLoan InstantLoan
duration : Integer specialConditions : String

23| Page

Transforming Business Rules into UML Class Model

Some types of business rules are transformed into UML class diagrams.

Transforming business rules into multiplicity bounds

Structural business rules formulated by alethic modal formulations having directly
embedded quantifiers are transformed into multiplicity bounds of the corresponding

associations or compositions:

It is necessary that a person owns at least 1 account.
7 that a person owns at most S account.
he account is_owned_by exactly one person.
ﬂ"ﬂt laccourlt owns person Person
‘accountNurnber:String 15 1 personCode : String
- - & | _ .

SBVR structural business rules can to define the overall variety of multiplicity bounds:

. branch
iz ipcluded 3n at most ne parent bank.
parent bank

includes ar east 4 and at 1 t branch.

: —
branch A a—
4 10 | \bankCode : String

|

isincludedin

parentBank |0..1

Transforming business rules into operations

Operative business rules (obligations and permissions) formulated as closed deontic
formulations are transformed into operations. Verbs denoting fact types on which
these formulations are based are transformed into operation names, roles — into

parameter names, object types playing these roles — into parameter types.

24| Page

For example, a business rule:
iz permitted that a debtor reguests a loan.
Is based on fact type:

debtor reguests loan

and it is transformed into the following operation:

Loan: :requests(debtor:Person, loan:Loan):void

Loan

amourt ; UnlimitecMatural
requestDate | Integer
returnDate [Integer
izReturned : Boolean

gives(bank : Bank, loan ; Loan 1 ; void

requests(debtar : Person, loan : Loan) void

checksvalidity Ol bank : Bank, 1oan : Loan 1 woid
checksReliabilty Of(bank : Bank, loan : Loan 1 woid c

G

25| Page

Transforming Business Rules into OCL Constraints

Transforming business rules into class invariants expressing integrity constraints

amount of the loan 21s not greater than

L

Context Loan
inv: self.amount<=1000

Constraints are created in the package “Constraints”.

E-C1 Constraints
i b4 b invloani=self . amount <=10000

Constraint names are unique. The name of a constraint consists of the part indicating
the constraint type name (“inv” for invariants, “pre” for preconditions”), class or
operation names and a sequence number. Stereotype <<constrained>> marks

classes having related OCL constraints:

gronstraineds
Loan

amourt © Unlimitedistural
requestDate © Integer
returnbate ; Integer
izReturned : Boolean

gives(bank : Bank, loan : Loan 1 void C
checkzValidityOf bank : Bank, loan : Loan 1 woid
checksReliakilityOfl bank : Bank, loan ; Loan 1: woid o
requests debtar @ Person, loan: Loan) woid

You can visualize constraints by clicking “Add class constraint note” on the right-click

class menu:

26| Page

Loan

Emont : Unlimitedhistural
reguestDate ; Integer
returnDate : Integer
isReturned : Boolean

N
ngives[bank : Bank, loan: Loan) woid
checksWalicity Of(bank : Bank, 1oan : Loan 1 woi
checksRelighiltyOf bank ; Bank, loan : Loan) v
reguests(debtor @ Perzon, loan; Loan) woid

.................................

Specification Enter
Symbol(s) Properties. .. Alt+Enter
Mew Diagram]
Go To]
Refactar 4
Select in Containment Tree Alt+E
Select in Inheritance Tree

Related Elements »
Tools »
Stereotype]
Aukasize

Edit Compartment]
Presentation Options]
Create Roles 4
Insert Mew Attribuke Chrl+alk+a
Insert Mew Operation Chel+ale+0
Insert Mew Signal Reception Chel+Ale+R

Insert Mew Part

Add class constraints note

N

izReturned=true]}

tinwLoan =zelf amount==10000}
{imvLoan2=zelf oclls TypeCfiReliableLoan)
implies self dektor loan-=for A1 |it1 .

goonstrained:
Loan

atmournt : Lnlimitedtstural
requestDate | Integer
returnDate © Integer
izReturned : Boolean

dives(bank : Bank, loan : Loan) woid
checksValidityOf(bank | Bank, loan : Loan) void
checkzReliability2f bank : Bank, loan : Loan 1 woid
requestsl debtor | Person, loan : Loan) : woid

=

=

Transforming business rules into class invariants expressing derivation rules

Structural business rules (necessities), formulated as alethic formulations with

embedded implications, are transformed into OCL invariants expressing derivation

rules:

27| Page

loan iska reliable loan

'h loan of the debtor that gets tkhat loan is returned.

L

Context Loan
inv: self.ocllsTypeOf(ReliableLoan)implies
self_debtor.loan0forAll(itl]
itl.isReturned=true)

Transforming business rules into operation preconditions

Operative business rules (obligations and permissions), formulated as deontic
formulations with embedded implications, are transformed into operations and
operation preconditions. Implication consequent is transformed into operation,

antecedent — into precondition:
bank ¢gives a loan

> loan i2s & valid loan and the loan is & reliable loan.

U

Context Loan::gives(ban:Bank,loan:Loan):OclVoid
pre: self.ocllsTypeOf (ValidLoan) and
self_oclIsTypeOf(ReliablelLoan)

Stereotype <<constrained>> marks operations having related OCL preconditions.

soonstrained:

Loan
amount ; Unlimitedistural
requestDete | Integer
returnbate : Integer
izReturned | Boolean
goonstrainedzgives bank : Bank, loan: Loan) void I

checksYalidity O bank . Bank, loan : Loan 1 woid
gconstrainedscheckzReliabilty O] bank ; Bank, loan ; Loan 1 ; void ©
requestsl debtor @ Perzon, loan: Loan 1 woid

You are able to visualize operation constraints by clicking the “Add operation
constraints note” on the operation right-click menu:

28| Page

..................... LDa.nb‘1m
: gronstraineds
D RequestedLoan
hecka\alidityOf bank © Bank, requestedlLoan | Reguestedloan
o g PV AT TP SO PO =R dLoan :
0 Specification Enter puested]
Ga Ta S
: Refactor b
[Select in Containment Tree Alt+E [ed: Bo
_________ Related Elements p |50 debto
. dektar
: Sterentype]
EEEEREE e
......... Is Abstrack I
. . Is Query .
'?”“E”pul:ulic
protected
package
EREEREE - - -
......... #dd operation constrainks note e
b woonatraineds
Loan
ipreGivez2=self ocllsTypeOfValidloan) amount ; Unlimitediatural
and =elf ocllsTypeOf(Reliableloan]} — — |reguestDate : Integer
| |returnDate : Integer
| izReturned : Boolean
Il — |=constrainedsgives(bank ; Bank, loan ; Loan 3 ; woid C
checksalidity O bank : Bank, loan ; Loan 7 woid
fpreChecksReliability Ol =zl L — — |=constrainedschecksReliabilityOf bank | Bank, loan : Loan) : vaid c
ool Typediiy alidlosn) requestsl debtor : Persan, [oan : Loan) : waid

There are further possibilities to automatically obtain attribute default values, operation
results and post conditions from SBVR definitions. Though mathematical calculations
are difficult to express in SBVR, the standard is extensible. Therefore, such

improvements depend on the willingness of developers.

29| Page

Development Process Based on SBVR

The process of defining business vocabularies and business rules is not easy. It is
difficult to formulate consistent and complete sets of concepts and propositions
governing business. Furthermore, SBVR specifications are of declarative nature and
they define just business constraints — constraints on structure and on activities, but
not on control flows of these activities, i.e. business processes. Though it is possible to
predefine sequences of activities by declarative constraints or even extend SBVR for
specifying business processes, such a practice is not recommended by business rule
methodologists. In contrast, they propose “separation of concerns” — keeping models
of business processes and specifications of business rules separately, not intertwining
them, because they are changing independently. Also, visual modelling is better suited
for definition of business processes. Additionally, we argue that modelling of business
processes helps define right and consistent business rules as well. Let’s take a look at

how all this integrates into the software development process (Fig. 4).

MagicDraw user VeTIS user
Define use cases Define business
vocabulary
—
Use case diagram Business vocabulary
il i
Define steps of main Define business rules
scenarios for each =
use case
Activity diagrams Vocabulary of
business rules

LT l

Define alternative

scenarios for each Transform business
use case vocabulary and

business rules to

UMLEOCL model
UML class diagram
with OCL constraints

{model of problem
domain)

Perform next
development phases

0
®

Fig. 4. Development process using SBVR business vocabularies and business rules

30|Page

In the presented process, we recommend writing software requirements (i.e. use case
specifications) in alignment with defining business processes (e.g. in the form of
BPMN or UML activity diagrams), business vocabularies and business rules.

We will describe the process with the simplified Loan Contracts example. Let's
assume we need to develop software for the information system in which persons
(debtors) would be able to borrow money from a bank, which in turn could lend it.
Arguably, the bank would be interested in checking validity and reliability of requested
loans; then it should take obligations to give loans, if they meet defined conditions, and
debtors should assume obligations to return received loans. We will go over the steps
of the presented development process and explain it in detail.

1% step. Define use cases

Use cases represent functional requirements for the system under development. We
launch MagicDraw UML CASE tool and create the project with the following use case

diagram:

2" step. Define steps of main scenarios of each use case

Initially, we define straightforward processes representing steps of main success
scenarios. We draw a UML activity diagram for each use case and represent our

desired business processes:

= T Y
activity Borrow | j Borrow l/l activity Lend| f Lend]J
? Check loan
RequestlLoan validity
ReceivelLoan c:‘;;;kb:w
ReturnLoan IssueLoan
\

3l1|Page

3" step. Define business vocabulary

Now we are launching the VeTIS editor from the MagicDraw UML tool menu:

nalyze Teamwork Window [
wrnplepoZiteracijos. mdzip v §|\M’Es |I |_[@ [_| .@ E !gl E.,.j E] @ .
31 Borrow | 73] Lend L‘il = Untitled2

i cRi=Ricoz Rixooalie-&-a:

: package LoanContractsllssCases| ﬁg}u-lﬁtlem U

ﬂ,usmess Vocabulary and Rules;
' Editor

Please wait while program is starting

When VeTIS editor is opened, we create a new project (e.g. ExampleProjectl) and

define the use case scenario steps as fact types in the Business Vocabulary:

M VeTIS Business Yocabulary and Rules Editor

File Edit Project MagicDraw UML ‘Window
: Ao I : ﬁ
"1 Navigator =0 || i ExampleProject1 - Yacabulary 22 | 8 ExampleProject! - Ruleset

== S - person
= ExampleProject1
-ﬂ ExampleProjecl m
M ExampleProject COREEPL. Cyass KON
M ExampleProject General concept: person
ExampleProject2
= loan

“debtor reguests loan

32|Page

To be able to do this we have to define all terms (object types and roles), on which fact

types are based.

“person
“debtor
Concept type: role
General concept: person
= loan

“debtor reguests loan

“debtor receiwves loan

“debtor returns loan
~“hank

“hank checks validity of loan

bank checks reliability of loan

bank gives loan
You will see that validation is required before introducing a new concept. You can

validate concepts by clicking the validation button:

M VeTIS Business Vocabulary and Rules Editor

File Edit Project MagicDraw UML ‘Window Yalidation button

B ehiF g =R .
™ Navigator = % ¥ Z O | M *ExampleProject] - Vocabulary £3 # ExampleProject] - R
[= ExampleProject 1 i pErsSon
B EvampleProjectl.rules
M ExampleProject1.voc 1 debtor
—H ExampleProjectl.voc_head
ExampleProject?

ExampleProjectl voc | Header ExampleProjectl.voc_head

El consale 2
Runtime messages

Each concept is defined by its name (the primary representation of a concept) and can
have (optional) definitions (definitions that are required for the particular concepts have

already been explained in the section “Defining Business Vocabulary”):

33|Page

B VeTIS Business Vocabulary and Rules Editor

File Edit Project MagicDraw UML Windoiw

- M = o . .

O L T R R
O Navigatnr% ms s e

= ExampleProject1
i # ExampleProjectl . rules
- ExampleProjectl, woc —debt & pefinition:
| M ExamplePraject1,voc_head {2 source:
Lc Dictionary_basis:
L Zeneral_concepk:
“loan & cConcept_tvpe:
@ Symbol_type:
“debt {3 Necessity:
@' Possibility:
“debt 3 Reference_scheme:
@- Moke:
e Example:
“debt {3 Synonym:
{2 Synonymous_Form:
“hank & see:
'@3 CQualifier:
“hank {3 preferrad:

Sometimes you can borrow definitions or synonyms from WordNet by clicking “Ask
WordNet” on the corresponding term displayed in the layout on the right side of the

VeTIS editor window:

T request_date

T return_date

T accept_date

T address

2 U - == :
[s syronym —] ok Wordie..._» |

add definition

d
Add hyponym ::e be
. Add hypernym e
ora

| 1. price (verb) ‘ the amount of money needed to purchase something; "the

{2, Eite Everbi price of gasoline”; "he got his new car on excellent terms";

| | | "how much is the damage?”

|4, price (noun)

|S. price (noun)

LA, nrice fnnnin

“price
Definition: the amount of money needed to purchase something
General concept: number

Synonym: cost

Also, we specify properties of the concepts — every bit of information that constitutes
the required knowledge about concepts:

34|Page

“bhank code
General concept: text
“bank has bank code

“amount

General concept:

nuber

= loan khas amount

“hail

~loan hkas bail

Concept type:

associative fact type

4™ step. Define business rules

Now we define main rules related with the structure of business concepts and activities

performed in that business. These are structural rules and operative rules.

Structural rules:

hank.

It is necessary that a loan has exactly one bail.
It is possible that a bail iq_of at most one loan.
It is necessary that a loan i;_giveq_by exactly one
It is necessary that a loan i;_of exactly one debtor.

Operative rules:

It is permitted that debtor requests a loan.

It is obligatory that bank checks validity of the loan.

It is obligatory that bank checks reliability of the loan.
It is obligatory that bank gives the loan.

It is obligatory that debtor receives the loan.

It is obligatory that debtor returns the loan.

When defining business rules, it is important to

specify all necessary synonymous

forms, i.e. the VeTIS editor does not allow insertion of unrecognized terms or fact type

forms.

35|Page

Li‘f ExampleProject - Wocabulary A *ErampleProjectl - Ruleset &3

i It iz necessary that a loan is gimnl

For example, it will “understand” fact type “loan is_given” only when you introduce that

fact type form into the Business Vocabulary:
“hank gires loan
Synonymous form: loan is given by bank
So after that we have required synonymous forms:

“debtor receives loan
Synonymous form: loan 2s of debtor

“bhank gives loan
Synonymous form: loan is givenr by bank

~loan hkas bail
Concept_type: associative fact type

Synonymous_form: bail is of loan

5" step. Transform business vocabulary and business rules into a UML&OCL model.

Now we can try to obtain our initial UML class model by saving the project and

exporting it to the MagicDraw UML tool.

I VeTlIS Businees Varahularv angd Ruhs Editnr

File Edit Pro ndow
o M
™ Navigator [| . ExampleProject1 - Vocabulary
(= %% = | It is necessary that a loan is given by exactly one bank.
=) ExampleProjectl] .
T __ﬂ Exan'spleprnjgd! It is necessary that a @ J_s_o-f exactly one M_
.E ExampleProjecl| .
M ExampleProject I Progress Information @
ExampleProject2

i l Exporting business rules to MagicDraw UML.

['TTIT]]

Transforming business rules to UML, this can take up to a few minutes, please wait.,

Our result is a simple UML class diagram:

36|Page

Bail
price : Unlimitediatural

bail |1
has

loan |0..1

Loan

amount : UnlimitedMatural

returns(debtor : Person, loan : Loan) : void
checksValidityOf(bank : Bank, loan : Loan) :

gives(bank : Bank, loan : Loan) : void

requests(debtor : Person, loan : Loan) : void
receives(debtor : Person, loan : Loan) : void

void

checksReliabiltyOf(bank : Bank, loan : Loan) : void

loan (0.2 loan |0.*
receives gives
debtor |1 bank |1
Person Bank
personCode : Integer bankCode : String

We will develop it in the following steps.

6" step. Define alternative scenarios for each use case

Now let’s consider how the process will look in the cases when requested loan is not

valid or unreliable. Refined activities representing use cases include specific concept

categories corresponding to different states of object types: requested loan, issued

loan, rejected loan, etc.

(activity Borrow [[Borrow]J

-

(‘activity Borrow [@ Borrow]J

?

’ A : RequestedLoan %'i
" Reauestl oar : RequestedLoan -
o

—5

e : IssuedLoan

Check loan
validity

[ValicLoan]

" Check loan
reliability

[else]

[else]

[else] [ReceiveLoan [ReliapleLoan]
| \ : IssuedLoan (—(Issueloan J

| ReturnLoan]
: RejectedLoan

[Unacceptedloan]
" Reject loan

@

\

37|Page

So we supplement business vocabulary adding these categories:

“recquested loan
General concept: loan

“accepted loan
General concept: loan

“issued loan
General concept: loan

“wvalid loan
General concept: reguested loan

“reliable loan
General concept: regquested load

We can group the categories according to their categorization types:

= loan status type
Concept type: categorization type
Necessity: iq_for general concept loan

“Loans by loan status type
Necessity: categorization scheme for general concept loan

that subdivides loan by loan status type

“regquested loan
Necessity: 1s included in Loans by loan status type

“accepted loan
Necessity: 1s_included in Loans by loan status type

Now we can supplement the business vocabulary with fact types corresponding to
activities of alternative scenarios:

“hank rejects requested loan

“unaccepted loan

“unaccepted loan is_a loan

We add synonymous forms for describing business rules:

“debtor receives issued loan
Synonymous_form: debtor thdq_receive;_the loan
Synonymous_form: debtor thaq_receiveq_the issued loan
Synonymous_form: issued loan tha{_iq_oﬁ_the debtor

“debtor gets loan
Synonymous form: loan is of debtor

38|Page

reliable loan is_a recquested loan

Synonymous form: loan 3is & reliable loan
Synonymous form: reliable loan 3is & loan

Now we can refine operative business rules regarding alternative scenarios:

It is obligatory that bank checks_wcrlidi ty of the requested loan.

It is obligatory that bank ckeckq_reliability;of the regquested loan,

if the regquested loan is_a valid loan.

It is obligatory that bank issues the accepted loan.

It is obligatory that debtor receives the issued loan.

It is obligatory that debtor returns the issued loan.

It is obligatory that a EEEE rejects the regquested loan

if the loan 2is_& unaccepted loan.

Also, we describe additional structural rules for derivation of categorized object types
and all required constraints:

It is necessary that amount of tke loan is not greater than 10000,

It is necessary that a loan is_a accepted loan

if the loan is @ valid loan and

the loan is_a reliable loan.

It is necessary that the requested loan is_a reliable loan

if each issued loan tkat is of tke debtor

tha{_receives_the issued loan is_returned.

7™ step. Transform repeatedly the business vocabulary and business rules into
UML&OCL model.

After the next export to MagicDraw UML tool, we obtain the corresponding class
diagram, shown on the next page (similar, but much bigger example from the same

business domain is given in the appendixes A and B).

8" step. Make the further refinements to the business vocabulary and business

rules or move to the next phase(s) of software development.

39|Page

Person Bail Bank

personCode | Integer price ; UnlimitecMatural barkCode ; String
dehtar |1 gets bail (1 hasz hank |1gives
loan [0.* loan (0.1 loan [0.*
zconstraineds
Loan

amount : Unlimitedhatural

requestsl dektor © Perzon, loan : Loan] woid

".'Il

LoanStatusType AcceptedLoan

izzues bank : Bank, acceptedloan ; AcceptedLoan 7 void

fincamplete, disjairt
LoanztatusType UnacceptedLoan

zoonstraineds

RequestedLoan
RejectedLoan
checksYalidtyOf bank : Bank, requestedLoan : Requestedloan 1 void iectDate - Int
gconstrainedschecksReliakiltyOf(bank | Bank, requestedLoan : ReguestedLaoan) © waoid "y T
goonstrained:rejectsl bank | Bank, requestedloan ; RequestedLoan i ; woid

IszuedLoan

ValidLoan Reliableloan izReturned : Boolean

receives(debtor : Perzon, izsuedloan : lzsuedloan 1 woid
returnsl debtor © Person, izsuedloan | Issuedloan) woid

The same class diagram with visualized OCL constraints:

N

| P Bail Bank
{invLoanT =self amount==10000} il - h

finvLoan2=self ocllsTypeOfldcoeptedloan)
implies self oclsTypeOf alidloan) and self. |

ocllzTypeOf(ReliableLoan)} debtor [1 gets bail |1 has bank [1gives

AN

personCode : Integer price : Unlimitecdiatural bankCode : String

laan |0.* laan (0.1 laan |0.*

gconstrained:
Loan

finvReguestedloand=zelf ocllsTypeOf

[ReliableLoan) implies self debtar issuedloan- amourt : Unlimitecdhiztural

=forAN(t2(t2 i=Returnedstrue) requestsr debtar @ Person, loan : Loan) : woid
| T
B | [LoanStatusType AcceptedLoan
| izzues hank ; Bank, acceptedLoan : AcceptedLoan 1 ; void
IpreChecksRelisbilityQf1 =self. | fincomplete, dizjoint}
ocllzTypelfalidloan) } ‘LoanStatus Type
: | | UnacceptedLoan
1
| goanstraineds
[Requestedloan
[RejectedlLoan
checksalidityOf bank : Bank, requestedLoan : RequestedLoan 3 ; woid iectDate © Int
zconstrainedschecksReliabiltyOf bank : Bank, requestedloan : RequestedLoan] void © el 5 e
soonafrainedsrejects(bank | Bank, requestedLoan : RequestedLoan) : woid (=
|

| IssuedlLoan

| [walidLoan BREebintoan | (RIS

| receives) debtar @ Person, issuedloan © 1ssuedloan) void
returnsl debtor ; Person, izsuedLoan : lssuedloan 1 ; woid

AN

{preRejects2=self ocllsTypeOflUnacceptedloan) }

40| Page

Working with the VeTIS Editor

VeTIS editor is implemented as a plug-in for the MagicDraw UML CASE tool. You can
launch it from the MagicDraw UML tool by clicking on the menu item “VeTIS”. There
are many options for binding VeTIS and MagicDraw UML projects: you can choose an

existing VeTIS project from the VeTIS workspace, import it or create a new one:

M Bind active MagicDraw UML project to YeTIS project |:|@®

Select binding method

Select the desired method For binding currently ackive MagicDraw LIML
project ta veTIS project,

(%) Bind to one of the projects in workspace,
() Bind to new YeTIS project,
) Impuort & project inko workspace and then bind ta it

After choosing “Bind to new VeTIS project” you will be asked to enter a name (e.g.

NewProject) and to appoint a location for the project. In order to describe the business
vocabulary in the VeTIS editor double-click on the vocabulary in the browser on the left
(e.g. NewProject.voc) and enter terms and fact type forms in the Vocabulary tab in a
VeTIS window. After inserting a new term, you have to validate it by clicking the

validation button:

B VeTIS Business Yocabulary and Rules Ecgs
File Edit Project MagicDraw UML Window

Validation button

=1 = :

] Navigator = 'j ¥ = 0|\ *NewProject - Yocabulary 2
ABC i pe.:'.s'od
ExampleProject1
LoanContracts

= MNewProject
B NewProject.rules
J!f NewProject.voc
.H NewProject.voc_head

41 |Page

For entering definitions of concepts you can open the Content assistant. To do this
enter a new line after the corresponding vocabulary entry (e.g. debtor) and click the
Tab button on your keyboard (or directly call the Content assistant form the right-click
menu, or press Ctrl+Space); choose the description item (e.g. “Concept_type:”) from
the Content assistant; press Enter; type the corresponding text (e.g. “person”); press
Enter.

B VeTi5S Business Yocabulary and Rules Editor,

File Edit Project MagicDraw UML Window

He ieh oM
[mavigakor =0 FH *MewProject - Yocabulary &5 B *newProject - Ruleset

= <}~=={f> = pEESOn

ABC debrtor

ExampleProjectl
LoanZontracks

= MewProject
il MNewProject. rules
M NewProject.voc 2 Definition: e

NewPraject.voc_head loan € source:
{2 Dictionary _basis:

debt & General_concept:
G Cancept_type:
G Svmbol_type:
@ Mecessity:
G Possibility:
G Reference_scheme:
@ Mote: 3

Concept _type: role
General Concept: person

As was already mentioned, you can insert definitions or synonyms from the Word Net
by choosing “Ask WordNet” on the right-click menu of a corresponding term displayed

in the layout on the right side of the VeTIS editor window:

To describe business rules in the VeTIS editor double-click on a business rules
vocabulary in the browser on the left (e.g. NewProject.rules) and enter business rules
in the RuleSet tab in the VeTIS window (it is possible to define several rule sets for the

same vocabulary).

Finally, specify the name of the Business Vocabulary by double-clicking on a business
vocabulary heading (e.g. NewProject.voc_head). Here you describe the language, the

speech community and other (optional) fields.

For entering business rules, you will often need to have synonymous forms for fact
types described in your business vocabulary (unknown fact type forms are marked in
red):

42 |Page

Il VeTS Business Yocabulary and Rules Editor

File Edit Project MagicDraw UML Window
HE & %0 M
[Mavigatar = 0| *hewProject - Yocabulary A *MewProject - Ruleset &3

= d:b = It iz permitted that a debtor reguests a loan.

ARC
ExampleProject 1
LoanZaonkracks
= MewProject
il MewProject. rules
.H MewProject, woc
.H MewProject, voc_head

i It i necessary that & loan is regquesked by at most one debtor.

To avoid potential problems describe corresponding synonymous fact type forms:

I VeTIS Business Yocabulary and Rules Editor,

File Edit Project MagicDraw UML Window

. I : :
Hoid: B I
5 navigator = O || ¥ *MewPraject - Vocabulary &3 | 8 *MewPraject - Ruleset
== “person
ABC
ExampleProject1 debror
LoanContracts Concept_type: role

= NewPraject General Cconcept: peErson

[MewProject.rules
.-H MewProject, yoc
.-H MewProject, vor_head

= loan

“debtor reguests loan
Fynonymous_form: loan is_requested_by debtor

Validate business rules, save the project and export it to MagicDraw UML by choosing
MagicDraw UML / Export. There are many options for choosing a MagicDraw UML
project to which the VeTIS project will be bound. By default, the VeTIS project will be
bound to an active MagicDraw UML project, or a new MagicDraw UML project will be
created, or you will be asked to specify it, if any of active VeTIS / MagicDraw UML
projects were bound before. After the transformation, you will have a UML package
with a reference to the transformed Business Vocabulary in it's name (e.g.
NewProject_imported), while the results of the transformation will be represented by

the UML class model and class diagram:

Loan

requests(debtar : Persaon, loan : Loan) : woid

loan |0.*

requests
debtaor (1

Person

43| Page

Exporting the same (e.g. corrected or supplemented) VeTIS project once more you will

get the following message:

,H ExampleProject - Yocabulary

It

is permitted that a debtor requests a loan.

obligatory that bank checks validity of the requested loan.

s obligatory that a bank ckecks reliability of the requested loan.
is necessary that a loan khas exactly one bail.
is possible that a bail belong to at most one loan.

Target MagicDraw UML project already has a package named
" ‘ExampleProject_imported' in model root. Do you want to replace this
package?

Do this automatically for this MagicDraw UML and VeTIS project pair from now on.

loan kas a

bail.

\i) Exporting business rules to MagicDraw UML.

T e Do i covecs 11_3_@@

I LLLLL]

Preparing active MagicDraw UML project for import,

It is possible to bind a pair of VeTIS / MagicDraw UML projects by ticking the “Do this

automatically...”. This way you will avoid messages asking for replacement of previous

transformations results:

Warning rz|
Target MagicDraw UML project already has a package named
. ‘ExampleProjeckl_imported in model rook. Do ywou want ko replace this
package?

[] Do this automatically For this MagicDraw UML and ¥eTIS project pair fram now on.

I Yes] [Mo] [Cancel

)

In case of generating a UML class model with OCL constraints, you will see what

classes or / and operations have constraints as they will be marked by stereotype

<<constrained>>. You can visualize constraints by choosing “Add class constraint

note” or “Add operation constraint note” on the right-click class / operation menu as

was already mentioned in the section “Transforming business rules into OCL

constraints”.

44| Page

VeTIS Installation and Configuration

You can install the VeTIS MagicDraw UML plug-in by simply placing the folder
org.vetis.md in your ProgramFiles/MagicDraw UML .../plugins directory along with
other MagicDraw UML plug-ins. The VeTIS plug-in can be used with MagicDraw UML

versions 16.0 and up.

VeTIS tool has the configuration file (language/en.xml), which is used for the
configuration of various settings (e.g. predefined phrases) of the tool. However,
graphical user interface for the configuration file is still under development, therefore, it
is not possible for end users to make changes to the VeTIS predefined phrases and

other features at the moment.

45| Page

Concluding Remarks for VeTIS Users

Thank you for reading this document (or at least it's conclusions)! It may seem there
are many limitations and drawbacks in the current VeTIS implementation. This is
partially true. While almost all required Business Vocabularies definition capabilities
are available, Business Rules description tools still lack some important features. We
honestly recommend you to keep rules (as well as your business processes) as simple
as possible — not only because of the immaturity of the VeTIS tool, but also for the

sake of your design models, your software and your business.

Our future efforts are aimed at extending VeTIS capabilities by including more types of
business rules; creating a user assistant for defining them; allowing configuration of
the tool; reusing existing Business Vocabularies; and, most importantly, closer relation

of the VeTIS capabilities with software development methodologies.

We are waiting for your comments, suggestions and any reflections whatever they

would be. We will try to answer all messages and make improvements if possible.

46| Page

References

[1] Semantics of Business Vocabulary and Business Rules (SBVR). Version 1.0.

December, 2008, available at http://www.omg.org/docs/formal/08-01- 02.pdf.

[2] Ceravolo, P., Fugazza, C., Leida, M. Modeling Semantics of Business Rules. 2007
Inaugural IEEE International Conference on Digital Ecosystems and Technologies

(IEEE DEST 2007), 171-176.

[3] SBeaVeR - Business Modeller. Eclipse plug-in, available at

http://sbeaver.sourceforge.net

47 |Page

Appendix A. An Example of the SBVR Business Vocabulary

Business Vocabulary for Loan contracts domain:

loan
Definition: the temporary provizion of monewy

loan status type

Concept type: categorization type
HNecezssity: is_for general concept loan

Loans by status Lype
Neceszity: categorization scheme for general concept loan
that subdirides loan by loan status tynpe

loan urgency type

Concept type: categorization type
HNecezssity: is_for general concept loan

Loans by loan urgency type
Neceszity: segmentation for general concept loan
that subdirides loan by loan Urgency Lyne

reliable loan

valid loan

relisble loan is & loan

valid loan is _a loan

real estate
Definition: property consisting of houses and land
SYNOnyn: asset
Svnonvio: building

Lerritory

person

bank

acoount

instant loan
General concept: loan
HNecessity: is included in Loans by loan urgency type

regular loan
General concept: loah
Mecessity: is imncluded in Loans by loan urgency Lype

48| Page

‘rejected loan
Genersal concept: loan
HNecessity: is included in Loans by status type

‘accepted loan
General concept: loah
MNecessity: is imcluded in Loans by Status type

‘forest parcel

‘debtaor
Concept type: role
General concept: person

hail
Concept type: role
General concept: real estate

‘owner
Concept type: role
General concept: person

‘branch
Concept Type: role
General concept: hank

‘parent bank
Concept type: role
General concept: bank

‘mmount
General concept: nuiber

‘duration
General concept: integer

'special conditions
General concept: CeXT

‘request date
General concept: integer

'return date
seneral concept: integer

‘accept date
General concept: integer
‘address

General concept: CeXt

‘price
seneral concept: number

49| Page

‘person code

General concept:

‘hank code

seneral concept:

‘account nunber

General concept:

‘reject date

General concept:

reason

General concept:

rarea

General concept:

hank giwes loan

Svnonymous form:

CEXT

text

TEXT

integer

LeEXE

nurmber

loan is given by bank

‘bank checks walidity of loan

‘bank checks relisbility of loan

debtor gets loan

Svnonymous_ form:
Svnonymous form:
Synonymous form:

‘debtor regquests loan

loan owwns hbail

Synonymous form:

loan is goé by debtor
loan of the debtor
debtor that gets that loan

bail is owmed by loan

OWner owhns real estate

Synonymous form: real estate is_owned_by OWHner

PErSon Owiks account

Synonymous form:

account is_owned_by peErson

‘account is included in bank

branch is included in parent bank

Synonymous form: parent bank includes branch

‘loan is returned

‘forest parcel is_p&rk

real estate is bail

loan kas amount

Synonymous form: smwount of the loan

50| Page

loan kas request date

accepted loan kas accept date

rejected loan kas reject date

rejected loan kas reason

regular loan has duration

instant loan kas special conditions

loan kas return date

real estate hkas address

real estate has price

person kas person code

hank kas hank code

acoount kads account nurmber

territory kas area

forest parcel is_categﬁrg_of real estate

forest parcel is_categvrg_of Lerritory

Business rules:

It i= necessary that the loan is_gﬁﬁ_by exactly one debtor.
It is necessary that a loan owns exactly one hail.

It iz possikle that a hail is_owned_by AL most one loan.

It is possikle that a debtor gets at most 3 loan.

It is possible that & branch is imcluded in at most one parent bank.

It i= necessary that the parent bank includes at least 4 and at most 10 branch.

It is necessary that an account is included in exactly one hank.
It iz necessary that a person owns at least 1 account.
It iz necessary that a person owns at wost 5 account.
It iz necessary that the account i;_owned_by exactly one person.

It iz necessary that the loan i;_giveq_by exactly one bank.

51| Page

It iz necezzary that the owner owhns at least 2 real estate.

It i=s necessary that the real estate is_owned_by exactly one owner.
It is permitted that =z debtor reguests = loan,

It is obligatory that @ hank checks validity of a loan.

It is obligatory that bank checks reliazbility of the loan
if the loan is & valid loan.

It is necessary that amount of the loan is_noﬁ_greater_than 10000,

It iz obhligatory that bank giwves a loan if the loan i;_a walid loan

and the loan is_a reliakhle loah.

It i=s necessary that the loan is_a reliable loan

if each loan of the debtor that gets that loan is_returned.

52| Page

Appendix B. Example of the Generated UML Class Diagram

Account
accountMumber @ String

account (0. %ccount |1..5

owWnz

perzon |1

I\

Person

Code : Str
{invLoanT =self amount==10000} B

finvLoan2=zelf ocllsTypeOf(Reliablelozmn)

e — — —

1preGives2=zalf ocllsTypeOf(Yalidloan)

implies self debtor Joan-=for I [it1 . ldebtor |1 owner |1
izReturned=true) } owyns
realEstate (2..*
B RealEstate

address ;. String

price : Unlimitedtstural

Territory

area . Unlimitedtatural

|
|
|
|
and self oclizTypeOf(ReliableLoan)} — T — I [HEtsizBail : Boolean
| |
bzl |1
I
|
|
| | Py ForestParcel
AN | izPark : Boolean
|
|
ipreChecksReliabilityOf1=zelf. | | loan |03 loan 0.1
oclsTypefValicl t
ypeC(validLosn,} T zconstraineds:
I FEIFCEECn | .
| Bmourt ; Unfimitecrstursl
| I:equestDate: Integer
eturnDate © Integer
| |=Returned : Boolean
| goonstrainedsgives bank | Bank, loan : Loan 1 woid G
checks\alidityOf bank ; Bank, loan : Loan J ; void
L - — — — — ~|= —reconstrainedschecksReliakilityOf] bank : Bank, loan : Loan 1 ; woid ©
request=(debtor : Perzon, loan : Loan 3 woid
loan |0.* = = =
gives jcomplete, disjoint }
Loanlroency Type) L
{complete, digjoint} {||Tu:|:| plete, disjoint }
bank :LoanUrgency Type ‘LoanStatupType
kiank |1 {incamplete, disjoint
branch s=nh : ReliableLoan RegularLoan InstantLoan LganStatusType
4.10 Bl string duration : Integer specialConditions : String
izincludedin 0.1
parentBank LoanUrgencyType LoanStatusType ValidLoan
RejectedLoan
rejectDate ;. Integer
resson ;- String

AcceptedLoan
aocceptDate : Integer

53| Page

Appendix C. About the Developers of the VeTIS Tool

The VeTIS tool is the development of the Information Systems Department (ISD) at

the Kaunas University of Technology (Lithuania). The tool is one of the results of the

project “Business Rules Solutions for Information Systems Development (VeTIS)”,

which was initiated by the Department and its partners from Vilnius Gediminas

Technical University and IT company “No Magic Europe” in 2007.

The main goal of the VeTIS project was to improve the quality of business model-

based development of information systems and the quality of information systems

overall by delivering the novel business rules specification method and engineering

solutions for this method. The VeTIS tool is one of such engineering solutions.

The main R&D areas of Information Systems Department at Kaunas University of

Technology are:

Model-driven development of information systems;
Business rules approach;

Requirements engineering;

Conceptual data modeling and databases;
Business process modeling;

Enterprise modeling;

Web services and service oriented architecture;

Semantics of information systems.

Contact information:

Studentu 50-313a, LT-51368
Kaunas Lithuania

Phone no.: +370 (37) 453445
Fax no.: +370 (37) 300352

E-mail: lina.nemuraite@ktu.lt

54| Page

