B megiEerawy

Architecture Made Simple

ENTERPRISE ARCHITECT
IMPORT PLUGIN

version 17.0.1

user guide

No Magic, Inc.
2011

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 1998-2011 by No Magic, Inc.

CONTENTS

1. Introduction 6
2. Plugin Information 7
3. Working with Enterprise Architect Import Plugin 8
3.1 Conversion Options 10
3.2 Conversion Messages 12
4. Transforming EA Specific Data 13
4.1 Constraints 15
4.2 Requirements 15
4.3 Scenarios 16
4.4 Files 16
4.5 Requirements (External) 17
4.6 Changes 17
4.7 Issues 18
5. Importing Diagrams 19
5.1 Geometry Properties 19
5.2 Color Properties 19
5.3 Display Properties 20
6. Special Transformation 20
6.1 Use Case Diagram Elements 20
6.1.1 Actor with Properties 20
6.1.2 Use Case with Invalid Inner Elements 22
6.1.3 Boundary 23
6.2 Activity Diagram Elements 23
6.2.1 Activity 23
6.2.2 Activity Diagram 26
6.2.3 Object as the Inner Element of an Activity 26
6.2.4 Synch Node 28
6.2.5 Activity Parameter 29
6.2.6 Exception Handler 30
6.2.7 ObjectFlow 31
6.2.8 ExpansionRegion 32
6.2.9 InterruptibleActivityRegion 33

3 Copyright © 1998-2011 No Magic, Inc.

6.2.10 Swimlane 34
6.2.11 StructuredActivity 36
6.2.12 InterruptFlow 38
6.2.13 ExpansionNode 39
6.3 Sequence Diagram Elements 40
6.3.1 Lifelines 40
6.3.1.1 Gaps between Lifelines 40
6.3.1.2 Lifelines Arrangement 41
6.3.1.3 Class, Part, and Port 42
6.3.2 Gate 43
6.3.3 Endpoints 47
6.3.4 Delete Messages 48
6.3.5 Branch Messages 50
6.3.6 Boundaries, Controls, and Entities 52
6.3.7 Actors 53
6.3.8 General Ordering 54
6.3.9 State Invariant 55
6.3.10 Continuation 55
6.3.11 Diagonal Message 57
6.3.12 Synchronous Message Behavior 59
6.3.12.1 Order 59
6.3.12.2 Process 60
6.3.12.3 Activation Level 61
6.3.13 Asynchronous Message Behavior 61
6.3.14 Return Message Behavior 62
6.3.15 Activation Options 63
6.4 Communication Diagram Elements 64
6.4.1 Object, Boundary, Entity, and Control 64
6.4.2 Exception Elements 66
6.4.3 Realization and Nesting 67
6.4.4 Association 67
6.4.5 Message 70
6.4.6 Operations 71
6.5 State Machine Diagram Elements 72
6.5.1 StateMachine 72
6.5.2 State 73
6.5.2.1 State Containing Other Elements 73
6.5.2.2 State Containing StateMachine 74

6.5.2.3 State Containing Attribute and Operation 75
6.5.2.4 State Containing Diagram Element 76
6.5.3 StateMachine Placed on a Diagram 77
6.5.4 Object 78
6.5.4.1 Object Containing State Machine Element 79
6.5.5 Synch 80
6.5.6 EntryPoint / ExitPoint 81
6.5.7 Object Flow Connecting State Machine Elements 82
6.5.8 Information Flow Connecting State Machine Elements 83
6.5.9 Trigger 84
6.5.10 Self Transition 85
6.5.11 Removed Element 86
6.6 Composite Structure Diagrams 87
6.6.1 Import Elements 87
6.6.2 Conversion Details 88
6.6.2.1 Dummy Class 88
6.6.2.2 Class 89
6.6.2.3 Interface 90
6.6.2.4 Part 91
6.6.2.5 Port 96
6.6.2.6 Collaboration 99
6.6.2.7 Expose Interface 101
6.6.2.8 Package 106
6.6.2.9 Assembly 107
6.6.2.10 Dependency 108
6.6.2.11 Removed Relationships 108
6.6.3 Transformation Report 110
6.7 Interaction Overview Diagrams 111
6.7.1 Conversion Details 111
6.7.1.1 Interaction Overview Diagram 111
6.7.1.2 Interaction Element 113
6.7.1.3 Interaction Occurrence 115

ENTERPRISE ARCHITECT IMPORT PLUGIN
FOR MAGICDRAW

MagicDraw has the functionality to import UML models that conform to various XMl versions (including
XMI 2.1) from Sparx Systems Enterprise Architect (EA), a modeling and visualization tool based on
the UML 2.3 standard. EA has the ability to import and export XMI compliant models; therefore, you
can use EA to import UML2.1(XMI2.1). However, the XMI models exported from EA contain some XMl
conflicts and EA-specific data that do not conform to the UML standards.

Enterprise Architect Import Plugin for MagicDraw allows you to migrate the XMI models from EA to
MagicDraw flawlessly by using an additional transformation process with a set of mapping rules.

The main purpose of Enterprise Architect Import Plugin is to help MagicDraw users who need to
import models from EA by managing the conflicts that can cause problems during loading the XMl
models to MagicDraw and transforming some EA-specific data into UML elements with stereotypes.

Apart from the ability to import model elements, the plugin also allows for the import of diagrams. The
current plugin version supports:

e Class diagrams

e Package diagrams

e Object diagrams

e Component diagrams

e Deployment diagrams

e Use Case diagrams

e Activity diagrams

e Sequence diagrams

e Communication diagrams
e StateMachine diagrams

e CompositeStructure diagrams

e InteractionOverview diagrams

Enterprise Architect Import Plugin for MagicDraw supports Enterprise Architect Versions 7.1, 7.5, and
8.0 (most of the testing procedures performed on EA 7.1.833 and EA 7.5.847). The plugin helps you
import and transform an EA exported XMl using the UML2.1(XMI2.1) option into a MagicDraw file
(*.mdxml).

Your imported models will include the following details:
e UML models
e Profiles
e Stereotype usage information
e EA-specific data:
e Constraints
e Requirements
e Scenarios
e Files
e Requirements (External)
e Changes
e |ssues
e Diagram information
e Class diagrams
e Package diagrams
e Object diagrams
e Component diagrams
e Deployment diagrams
e Use Case diagrams
e Activity diagrams
e Sequence diagrams
e Communication diagrams
e StateMachine diagrams

e CompositeStructure diagrams

e |nteractionOverview diagrams

e SysML (SysML 1.1 model from EA will be transformed to MagicDraw SysML.)

Enterprise Architect Import Plugin will be automatically loaded when you start MagicDraw.

To open the Import Enterprise Architect Files dialog:

e On the MagicDraw main menu, click File > Import From > Enterprise Architect
UML2.1 XMI2.1 File (Figure 1). The Import Enterprise Architect Files dialog will
open (Figure 2).

:| File | Edit View Lawvout Diagrams ©Ophions Tools Analyze Teamwork ‘Window Help

i 1 MewProject... Chrl+M @@@.@B
= Open Project... Chr+0 %‘J %&] % ﬁg %g nua;_“ uEu; % . E_" l.:%"i%' %‘ "'i'i
. Save Project Chrl+5 I 7 .
E. < N = ; 3 "
[Save Project fs... 2ard < ! Uniitled] - Untitled
- . o B o=
= Close Project
B Close all Projects :l £ Common
AI
Use Madule. .. & Hote
| Import From] |

Another MagicDraw Project. ..

Z5Y File

LML =M 1.0 File

ML %M1 1.1 File

ML %MI 1.2 File

ML #MI 2,1 File

MOF =M File

EMF UMLZ (w2, #MI File
EMF UMLZ (w1, #MI File

Enterprise Architect LML 2,1 %MI 2.1 File

Rational Software Architect/Modeler Project

Rational Rose *.mdl Project File

Figure 1 -- Enterprise Architect Import Menu

(X

E Import Enterprise Architect Files
Input and Cutput
EA exported ¥MI: UML 2, 1(XML 2.1}

MagicDraw oukput file name {*. mdxml)

iyl

Conversion Opkions

[] Switch aggregation side (Recommend For XMI exported fram EA 7.1)
[Exclude EA specific data
|:| Open project after conversion

[] senerate conwersion lag

‘WWarning: This option will slow down the conversion process.

Figure 2 -- Import Enterprise Architect Files Dialog

Table 1 -- Import Enterprise Architect Files Dialog Properties

Property name Function

EA exported XMI: UML 2.1(XMI |To specify an EA exported XMl file. You can click the “...” but-
2.1) ton to select the file.

MagicDraw output file name To specify a MagicDraw output filename. You can click the “...”
(*.mdxml) button to select the file.

Switch aggregation side To configure the aggregation switch-side. This option is rec-

ommended for XMI files exported from EA 7.1.

Exclude EA specific data To exclude all EA-specific data from being imported (see
“Transforming EA Specific Data” on page 13 to see a list of EA
specific-data that can be transformed into UML elements with
stereotypes).

Open project after conversion To load the output project file once the conversion process
has been completed.

Generate conversion log To generate a conversion log and save it in the same folder as
the MagicDraw output file. The same conversion information
will also be displayed on the MagicDraw messages window.

To import an EA project:
1. Either type an EA exported XMl file or click the “...” button to select the file (Figure 2).

NOTE Enterprise Architect Import Plugin supports the EA XMl files exported
with the option specified as: XMI Type = UML2.1(XMI 2.1).

2. Either type a MagicDraw output filename or click the “...” button to select the file.

3. Select the conversion options.
4. Click the Import button to start importing the file.

3.1 Conversion Options

Apart from the options that you have in the Import Enterprise Architect File dialog, you can also
find several other conversion options in the MagicDraw Environment Options dialog.

To view the Enterprise Architect Import other options in the Environment Options dialog:

1. Click Option > Environment on the MagicDraw main menu. The Environment
Options dialog will open (Figure 3).

2. Select Enterprise Architect Import from the tree menu on the left-hand side. The
transformation options are classified into two groups: (i) General and (ii) Activity ele-
ment mapping.

Environment Options

g g“‘m Enterprise Architect Import

:.% Er'aqur 'El 8% E‘ By B2

..ﬁ Teaniwatk B General

i CWS Switch aggregation side (Recammend For XML ex,.. [| False

-G Updake Exchude EA specific data []false

-2 Network Generake conversion lag [trus

% E:;::sard Open projeck after conversion] False:

L& Bl Activity elemnent mapping

Bl { EA WrbeVariable Action to R
_%5 speling Conwert E& 'Wrikelinkaction o Createlinkaction

H Launchers Corwerk B4 \WinbaStnuckuralFeaburefction to AddStructuraFeatureysluefction

{ee E Expetiance

i~ [F] External Toals

i Echpse UML2 {1, §MT
- Echpse UMLE (w2 00 101
38 Eclpse UMLZ (w300 M1
JeRablF riterprise frchibact Impork
b Scripts

\Convert EA WriteVariable Action to

.

Figure 3 -- Environment Options Dialog

(i) General

The options available in the General group are the same as those in the Import Enterprise Archi-
tect Files dialog.

11 Copyright © 1998-2011 No Magic, Inc.

(ii) Activity element mapping option

The Activity element mapping group provides you with the options to convert the EA elements to
other element types.

Table 2 -- Activity Element Mapping Options

Property name Function

Convert EA WriteVariableAc- To convert EA WriteVariableAction to either AddVariableVal-

tion to ueAction or RemoveVariableValueAction.

Convert EA WriteLinkAction to | To convert EA WriteLinkAction to either CreateLinkAction or
DestroyLinkAction.

Convert EA WriteStructural- To convert EA WriteStructuralFeatureAction to either

FeatureAction to AddStructuralFeatureValueAction or RemoveStructuralFea-
tureValueAction.

3.2 Conversion Messages

Enterprise Architect Import Plugin consists of a series of XMI conversions. Each conversion will be
reported to the MagicDraw Messages window and also saved to a log file if the Generate conver-
sion log option is selected.

The conversion log will be saved in the same directory as the MagicDraw output file using the same
name but a different .1og extension.

NOTE You can open the MagicDraw Messages window by pressing Ctrl + M.

Besides UML data, each EA-exported XMI also contains EA-specific information. Enterprise Architect
Import Plugin can transform this particular information into UML elements with the stereotypes
applied if you select to include EA-specific data before importing the XMl file. The EA-specific data
that will be transformed include:

4.1) Constraints: name, description, type, weight, and status
4.2) Requirements: name, description, type, status, difficulty, priority, and last update

(
(
(4.3) Scenarios: name, description, type, and weight
(4.4) Files: file path type

(

4.5) Requirements (External): type, status, difficulty, priority, last update, created, and
note

(4.6) Changes: type, status, difficulty, priority, last update, created, and note

(4.7) Issues: type, status, difficulty, priority, last update, created, and note

NOTE

You can access and specify the EA information in the Property dialog
in EA.

To include the EA-specific data in the transformation process, the plugin will create a set of stereo-
types and tag definitions as the EA Profile (Figure 4).

14

EI@ Ef Profile [EA_Profile, xmi]
B2 Relations

Elﬁ EAfctor [Class]

b @ -hase_lass : Class
Bl-## EAiZhange [Class)

- @ -skatus : Skring
-bype 1 SEring
~difficulty : String
-priarity Skring
-last update : String
-base_Class : Class
. -creaked @ Skring
% EAConstraint [Constraint]
- -bype 1 SEring
- @ -weight @ String
- 3 -skatus @ Skring

- @ -base_Constraink ; Constraint
-&% EADiagram [Diagramm]
B Relations
- &% -hase_Diagram ; Diagram

- @ Wersion @ SEring
El-## EAlssue [Class)

- & -base_Class : Class
-skatus 1 Skring
-bype 1 String
-difficulty ¢ Skring
-pricrity Skring
-last update ; String

. -created : Skring
E-+# EARequirement [Class]

- @ -base_Class 1 Class
-narne ;- Skring
-description ; Skring
-bype 1 String
-status : Skring
-difficulty ¢ Skring
-pricrity Skring
-last update ; String

. -created : Skring
E-+#* EAScenario [Element]

- 3 -base_Element : Element
- ¥ -name : Skring
- % -bype 1 Skring
- @ -weight @ Skring

m
GOQQ00

200000

2000Q000

Figure 4 -- EA Profile

Copyright © 1998-2011 No Magic, Inc.

4.1 Constraints

Each EA constraint will be transformed into a UML constraint and <<EAConstraint>> will be
applied to the constraint. The properties of an EA constraint will be mapped either to the properties of
a UML constraint or to the tag values of <<EAConstraint>>. Table 3 below shows the constraints
mapping details.

Table 3 -- Constraints Mapping

EA MagicDraw

name The name property of a UML constraint.

description EAConstraint::type tag value

type EAConstraint::weight tag value

weight EAConstraint::status tag value

Constraint owner Constrained Element property point to the constraint owner.

4.2 Requirements

Each EA requirement will be transformed into a UML Class. In EA, since a requirement cannot be
created in an element, which is the owner of a Class, the transformed requirement will be kept in a
separate Package, named EA Requirement, and a Realization will be created from the owner of the
requirement into a transformed requirement. See Table 4 below for details.

Table 4 -- Requirements Mapping

EA MagicDraw

name EARequirement :: name tag value
description EARequirement :: description tag value
type EARequirement :: type tag value
status EARequirement :: status tag value
difficulty EARequirement :: difficulty tag value
priority EARequirement :: priority tag value
last update EARequirement :: name update value

4.3 Scenarios

Each EA scenario will be transformed into a UML Comment and <<EAScenario>> will be applied to
the comment. The properties of a scenario will be mapped either to the properties of each UML Com-
ment or to the tag values of <<EAScenario>>. See Table 5 below for details.

Table 5 -- Scenarios Mapping

EA MagicDraw
name EAScenario::name tag value
description The Body property of a UML Comment.
type EAScenario::type tag value
weight EAScenario::weight tag value
subject An annotated Element property pointing to an EA subject
element.
4.4 Files

EA is capable of adding files to a UML element. The information will be transformed into a Hyperlink
in MagicDraw.

Table 6 -- Files Mapping

EA MagicDraw
Local file File
Web address Web page

4.5 Requirements (External)

A Requirement created by EA is different from the one you create as an internal element for each ele-
ment. EA requirements will appear in the Project Browser and can be pasted on a diagram. Each EA
Requirement will be transformed into a Class and <<EARequirement>> will be applied to the

requirement.

Table 7 -- Requirements (External) Mapping

EA MagicDraw

type EARequirement::type tag value

status EARequirement::status tag value
difficulty EARequirement::difficulty tag value
priority EARequirement::priority tag value

last update EARequirement::last update tag value
created EARequirement::created tag value
note Documentation

4.6 Changes

EA can create a Change and will export it as a Class. The Class information will be transformed into

the <<EAChange>> tag values. See Table 8 below for details.

Table 8 -- Changes Mapping
EA MagicDraw
type EAChange::type tag value
status EAChange::status tag value
difficulty EAChange::difficulty tag value
priority EAChange::priority tag value
last update EAChange::last update tag value
created EAChange::created tag value
note Documentation

4.7 Issues

EA can create an Issue and will export it as a Class. The Issue information will be transformed into
the <<EATIssue>> tag values. See Table 9 below for details.

Table 9 -- Issues Mapping

EA MagicDraw

type EAlssue::type tag value

status EAlssue::status tag value
difficulty EAlssue::difficulty tag value
priority EAlssue::priority tag value

last update EAlssue::last update tag value
created EAlssue::created tag value
note Documentation

Copyright © 1998-2011 No Magic, Inc.

Enterprise Architect Import Plugin allows you to import diagrams. The diagram information that will be
imported include:

(5.1) Geometry properties
(5.2) Color properties

(5.3) Display properties

5.1 Geometry Properties

The geometry properties that will be imported to MagicDraw are as follows:
e Positions on a diagram (for shape elements)
e Width and height (for shape elements)

e Path break points (for link elements)

NOTE Geometry information can be overridden by other display properties.
For example, if an imported element width is shorter than the required
width to display text on the element, the width will be adjusted automat-
ically.

5.2 Color Properties

The color properties will be imported along with the diagrams to MagicDraw. The name of each color
property is called differently in MagicDraw.

Table 10 -- Color Properties Mapping

EA MagicDraw
Background color Fill color
Border color (for shape ele- Pen color
ment)

Font color Text color
Line color (for link element) Pen color

5.3 Display Properties

The display properties in EA can be categorized into three groups: (i) shape, (ii) link, and (iii) diagram
properties. Only those that have similar properties to the MagicDraw’s will be imported, for example,
the Show Diagram Details property in EA will be imported as the Show Diagram Info property in
MagicDraw.

An EA-exported XMI contains some non-standard UML elements and many elements that can break
the XMI schema. To retain the standard UML elements and keep the XMI schema intact, Enterprise
Architect Import Plugin applies some particular transformation rules. The following sections will
describe how the plugin transforms each model element so that you can import a complete XMl
model that conforms to the UML standards.

6.1 Use Case Diagram Elements

6.1.1 Actor with Properties

An Actor with properties will be transformed into a Class with the EAActor stereotype (Figure 5).

EA (Before Conversion) MD (After Conversion)

'_l_'
sEAACLOrs

Actor?
A J’:ﬂ
Actor with
property ¥ 3
.a!f E o
Actord y -
v Actors

Figure 5 -- Actor with Property

NOTE

An Actor that has been converted to a Class with <<EAActor>> will
not display some properties accordingly such as Fill Color because the
stereotype image will be shown instead.

6.1.2 Use Case with Invalid Inner Elements

A NestedClassifier, ownedComment, ownedRule, ownedAttribute, or ownedOperation cannot be an
inner element of a uml:UseCase. It will be moved to a new created realized Class.

EA (Before Conversion) MD (After Conversion)
- (] Lsecase = B[] UseCase
T2 Uselase * EI{ F'.L!Lab:u'us . |
] Packagal o - A Realzation[UseCase: (ke Case? - LsaCase:Use Case?]]
I T
, § g i
2 hctors 2 {1 -& Changel
2 | Q Tssuel
; L i = Requrementi
1 Qrmﬂ G = Use Casa2
:wtnmu [o -neme(l]
D ke Casel 1\ A_PrimitiveTypes_Pack E&_nore_Type !
L2 Requirement!
£ changel
¥ Performances [eom]
gy Modlet
i Eﬁg EA Profile [EA_Profie. xmi] -
== : Hi-E5 thecustomprafie -
140 | & ¢ &4 o o | r'

Figure 6 -- Use Case with Invalid Inner Elements

22 Copyright © 1998-2011 No Magic, Inc.

6.1.3 Boundary

A boundary in EA will be converted into a rectangle with rounded corners in MagicDraw. The bound-
ary can contain inner elements. Unlike the rectangular boundary in MagicDraw, the boundary in EA
will take all the inner elements with it whenever it is moved (Figure 7).

EA (Before Conversion) MD (After Conversion)

boundary 01 . boundary 01 . .

. [UseCazed J

/ i e, /
<EAbCtoEs e

Actor]

| -
Mw‘ -y ’ ™ .
I : .
‘
-t\ o

| Use Cazel]
| y
»

LS i "

Figure 7 -- Boundaries

6.2 Activity Diagram Elements

6.2.1 Activity

An Activity element in EA can be directly placed as an element view on an Activity diagram. However,
this behavior conflicts with the MagicDraw and UML notation. In MagicDraw, if you drag an Activity
from the containment tree to an Activity diagram, a new CallBehaviorAction view will be created and
the 'Behavior' property of the CallBehaviorAction will be set to the Activity. This same behavior will be
used in the import process.

An Activity element created in EA, which is placed on an Activity diagram, will be transformed into two
elements: (i) Activity, and (ii) CallBehaviorAction elements. Both of them will have the same name and
will be linked through the property of a CallBehaviorAction element called 'Behavior'.

After the element has been transformed, the following transformation message will open:

Updated element <xmi:id>: A new CallBehaviorAction was created and its
Behavior was set to the element.

Praject Browser ¥ 1 X
seeey CEEEREC IR T
= g Model
= [E] Packaged
E ActDia
D Activibyl

Figure 8 -- EA Activity

(A call Rehaviar Aetien - Aetiviryd

S Speviliativn ul Call Beliavior ALLivn properLies
: tante) 20 Dia -,
% Conk.. UE"—" Inkeritance & Disgrams |<> Model Ex.. // “pocify 2ropernes o° £z selected Coll Behavicy Action in tha prorerics speafication table, F] |
Contanmznt » P X / Chanse Fhe Feprtk il Alepkans e b Pipetiss diap=cmeon lisk -oosee mees poereties, E j
(] v & | B o /
O | V B /
-] E5 Mot p =1] ke @ & m Mg o Aot (o spackagen €4 Aco] v|
i : i o ' kAl L
+-[] Eb_FrimtiveTypes_Package yd -
= I D vourertdeny e [am] w0 (5] = om Topecties) ooart v [Custamize
E D Madel // b [B] sane In Diayare I;I = El A [—I
N
_ FE D Fackaged p / IIEJI S e £l iyl
""" g Actvityl y b] Rarclunn el M= Mok Paukeyel::28_ful cly bl
E Q EA_Activity B s Lhanct 40 bA Aty (M0 ackancy]
:@ Crshsint Anrlied hmreemime
‘) 3 0 AcllvtyL [Model Packaged”)
2
l B ML Standard rcfile [UHL Stand\dLProFlIe wrl] 1/ i ;}3:.0;'1
B [EA Profile [EA Profile, xnl] \ 1| I
‘8 Cede engineering sets \ ToDo
Elerant [0 EfLL FS56.3238 FI=° 42d o000 IFZ.

. - ™) Nrhavinr
EAT,E[:;E!\-TE-'&EAKSESEY1 : \ \ The itreoeed beliawioe U esl be e o auos Ly 2 0 el g oonted.
A ctivityd |'|1
\\ — |
Figure 9 -- Activity with a New CallBehavior in MagicDraw
NOTE The EA Activity and CallBehaviorAction elements have a similar characteristic,

that is, you can attach a control flow to it and others. EA has its own CallBehav-
iorAction element.

Additionally, any ObjectNode elements that are attached to the Activity element will be transformed
into InputPin elements and attached to the newly created CallBehaviorAction element (Figure 10).

25 Copyright © 1998-2011 No Magic, Inc.

EA (Before Conversion) MD (After Conversion)

Objectdode element InputPin element
ldbjedh]ddﬂ

Activityl | BEA_Activity?: sctiviey - .
Activityl

th

Figure 10 -- An ObjectNode Converted into an InputPin

6.2.2 Activity Diagram

Every Activity Diagram element from EA will be placed inside an Activity element that has the same
name (Figure 11).

B3 Packagen
: [l AckivityDiagramA
e iy} it Diagrama

Figure 11 -- Activity diagram placement in MD

NOTE In MagicDraw, every Activity diagram element must be placed inside an Activity
element that has the same name, but this is not the case in EA.

6.2.3 Object as the Inner Element of an Activity

Object elements, which are inside an Activity element in EA, will be removed (Figure 12).

EA (Before Conversion) MD (After Conversion)

=1 | 2] Padkages Elﬁ Packages
7 ActivityDiagrams
Ohjeck1

) InstanceSpecification
Object element

H| Packages -] Packaget
&1 AckDia L Activiey 1
= B Ackivityl b3 EA_Activity
£ e L5 ActDia

Object element in Activity element

Figure 12 -- Object Element Transformation
NOTE Object elements in MagicDraw have their XMI types defined as 'uml:Central-

BufferNode' but, those in EA have their XMl types defined as 'uml:Instanc-
eSpecification', which do not belong to an Activity diagram.

An Object element that contains any ActivityDiagram-related elements will be removed (Figure 13).

EA (Before Conversion) MD (After Conversion)

Bl Packaged -E3 Packaged
% tD' : =W ject |
= Object : L
D Activity 1 Eh-=4 EA_Activity
@ Actioni - (] ActDia*

Figure 13 -- Object Containing Activity-related Elements

Note In MagicDraw, an Object element (CentralBufferNode) is not allowed to contain
any other elements besides comments and hyperlinks.

6.2.4 Synch Node

A Synch element in EA will be transformed into a Join element in MagicDraw and it will look exactly
like a Fork/Join element (Figure 14).

EA (Before Conversion) MD (After Conversion)

Synch Syn?h

Figure 14 -- Synch Element

Note A MagicDraw Fork/Join element (whose type is um1 : ForkNode) can be used to
construct either a Fork and Join node in an Activity diagram. The JoinNode ele-
ment (whose type is uml : JoinNode) is allowed to be placed in the Activity dia-

gram, but the element’s image will be displayed as the Fork/Join element’s
default image.

6.2.5 Activity Parameter

If you create an ActivityParameter element, MagicDraw will automatically create an ActivityParame-
terNode element to represent it. Every ActivityParameterNode element in EA will be transformed into
a Pin element (Figure 15).

EA (Before Conversion) MD (After Conversion)

Activityd param‘ Model:: .param']
© 07| Packaged_ActivityParam ST
eterEs_Activityd: :

: ActivityT Activity! paramz
|;:| paramz S |+| T

Figure 15 -- ActivityParameterNode

There are four parameter types that you can specify for each Activity Parameter element: (i) in, (ii)
out, (iii) inout, and (iv) return.

The ActivityParameterNode element of an ActivityParameter element, whose parameter type is either
'in' or 'inout', will be transformed into an InputPin element. The ActivityParameterNode element of an
ActivityParameter element, whose parameter type is either 'out' or 'return’, will be transformed into an
OutputPin element (Figure 16).

EA (Before Conversion) MD (After Conversion)

IR T el =L -
At h AEAt - _ Modstoacimged : e |
EA_Schvry Aoyl : Eb_a ol dvokiv b2
Eerig Bl
| th
¥
PiCUT EETURH paoT : T RETURH

Attt yd Beh i b T Eacmm'. Pl ekt - e iomred o2
E&_Aotidy: Sl s B Aoty Aoy g
ActiviyE : Atrmyd
th rh
e i

Figure 16 -- ActivityParameter Type

Note Usually, if you specify the parameter type of an ActivityParameter element as
'inout’, two Pin elements (InputPin and OutputPin elements) will be created for
the element. Since EA will only create one ActivityParameterNode element, this
element will be transformed into an InputPin element.

6.2.6 Exception Handler

The Exception Handler element in EA is different from the UML's ExceptionHandler. This EA element
will be transformed into a CallBehaviorAction element. Any ObjectNode element that is attached to it
will be transformed into an InputPin element and any InterruptFlow line will be transformed into an
ExceptionHandler line in MagicDraw (Figure 17).

Atfter the transformation has been completed, the following transformation messages will open:
® Updated element <xmi:id>: EA ExceptionHandler is transformed to
an CallBehaviorAction with and input pin.

® Updated element <xmi:id>: EA InterruptFlow was transformed to
an ExceptionHandler.

EA (Before Conversion)

=l 2] Packages
Aoticd E ActivityDiagram

- =

™ @ Actionl
~._ ObjectNode el t
T jectace elemen —-- T2 ExceptionHandler1
OLje e | -
/l S } ChjectMode1
-

~ Exc2pt onHancler |
Inter ruptFlow line]

ExceptionH andler /“

element
MD (After Conversion)
. P;gﬁg;gs:: o _ExceptionHandler
EA_Activity : glement

ek e e P

3 Action

' allBehavior Action

- element
. [
\ Objegthode
. . . " Model::ﬁackagés::
L s E&,_Activity3::
InputPin element : ExceptionHandler1

E|E| 2ackages
| B3 EA_Activity3
Bl Actionl
: EP}' Relations
: b 7, Ewception Handler[Action1-ExceptionHandler]
E|C) ExceptionHandler 1
¢ L& Objecthodet
L") ActivityDiagram

Figure 17 -- ExceptionHandler

6.2.7 ObjectFlow

An ObjectFlow line whose both ends are not attached to any of the following elements, will be trans-
formed into a ControlFlow.

e InputPin
e OutputPin

e ObjectNode
e CentralBufferNode
e DataStoreNode

Atfter the transformation has been completed, the following transformation message will open:

Updated element <xmi:id>: uml:ObjectFlow updated to uml:ControlFlow.
6.2.8 ExpansionRegion

Most of the elements that are placed inside any ExpansionRegion elements in EA will stay in their
original place (Figure 18).

EA {Before Conversion) MD (After Conversion)
= g Modsl 5 Model
= B Package ! B0 Package
7 ActivityDiagram] £ T Bee EA Adtivity!
g””it"ﬁ”' - @ ActiviyFinal
= i SonEegio| : ry
= 'chl . i <pansionRegion]

‘o @ AckivityInitial
: -2 Ackionl
] Lo AckivieyDiagrami

@ ActivityInkial

Figure 18 -- ExpansionRegion Tree View

However, if there is any Activity, Swimlane, InterruptibleActivityRegion, StructuredActivityNode,
LooNode, SequenceNode, ConditionalNode, or another ExpansionRegion contained within an
ExpansionRegion, then it will be placed within a dummy Activity element. The created dummy will-
have the same name, and placed at the same level as the ExpansionRegion element (Figure 19).

EA (Before Conversion) MDD (After Conversion)
QEE 3 1oc
= [H] Packagel E-£7 2ackagel

7 ActDia T3 Ackivityl

@ Activityl 53 EA_Activityl

° -

= @ ExpansionRegionl
=J-- [0 ExpansionRegionz
@ Actionl
@ ActivityInitial
F InkerruptiblectivicyRegionl
L Swimnlanel

(D Ackivity 1 Aciviby

nE

i ExpansiorRegionl

[ActDia

EQ ExpansiorR.egionl

¥} InterruptibleactivityRegonl
E & ExparsionRegion2

b @ AckivityIniial
¢ b Adtionl
s 17 Swimlane

Figure 19 -- Nested ExansionRegion Tree View

After the transformation has been completed, the following transformation message will open:
Updated element <xmi:id>: ExpansionRegion cannot contain some inner

elements. An Activity with the same name as the ExpansionRegion was
created to contain inner elements.

6.2.9 InterruptibleActivityRegion

Most of the elements that are placed inside an InterruptibleActivityRegion element in EA will be
placed at the same level as the InterruptibleActivityRegion element (Figure 20).

EA (Before Conversion) VD (After Conversion)

g Madel -3 Model
= |8] Packagel B[Package!
& ActDia ey Ackivityl
33 Activity1 EF-40 E& Ackivityl
@ O Ackiviby 1 Ackivity 1
ey i o <>
IR 1 TriCer ruptible
i Iv:r JI_|t||H| S
CCion

@ ActivityInitial

@ ActivibyInitial

Figure 20 -- InterruptibleActivityRegion Tree View

However, if there is any Activity, Swimlane, ExpansionRegion, StructuredActivityNode, LoopNode,
SequenceNode, ConditionalNode, or another InterruptibleActivityRegion contained within an Inter-
ruptibleActivityRegion, then it will be placed within a dummy Activity. The created dummy will have
the same name, and placed at the same level as the InterruptibleActivityRegion (Figure 21).

EA (Before Conversion) VD (After Conversion)

1= o del B3 Model
= [Hl Ek';g:é_ B-F Packagel
CELa g
Py b= Ef_Ackivicy 1
el e
= [#F} Inberruptiblefctivity Regionl H & Actiont
3D Ackiviky 1

O ExpansiorR.eaqgionl

@ ActivityInitial
U#F Interrupkiblesctiviky RegionZ

Interruptible ActivityRegionl

=1 B Swirnlanei @ ActDia ; o)
@ Actionl B3 InterruptibleActivityRegionl
@ AckivityIniial C) Activity 1 activityl

i ExpansionRegionl
- [Tl Swirnlanel

; t InkereupkibleActivityReqion2
Ll Ackivitel

Figure 21 -- Nested InterruptibleActivityRegion Tree View

After the process has been completed, the following transformation message will open:

Updated element <xmi:id>:

InterruptibleActivityRegion cannot contain
some inner elements.

An Activity with the same name as the
InterruptibleActivityRegion was created to contain inner elements.

6.2.10 Swimlane

Most of the elements that are placed inside any Swimlane element in EA will be placed at the same
level as the Swimlane element (Figure 22).

EA (Before Conversion) MD (After Conversion)

= £ £ Model
i B[] Package
i =4 EA_Ackivityl
: L~ Ackion]
i
i
|
1
I

8

Mode

- =] F'au:k,age
ﬁ, ActivityDiagraml

wairnlane 1

:

@ Actionl - @ AckivityTnitial
@ ActivibyInitial : ----- @ ActivityFinal
@ ActivityFinal - T S
3| PuckivityDisgrami

Figure 22 -- Swimlane Tree View

A dummy Activity will also be created to hold any other Swimlanes that it may contain. The dummy
activity will have the same name and placed at the same level as the Swimlane.

If two or more Swimlanes are nested together, then every element (except Swimlane element) that is
contained within either of them will be taken and placed at the same level as the Swimlane that tops
the nested-Swimlane-elements hierarchy (Figure 23).

EA (Before Conversion) MDD (After Conversion)
Ui Model -0 Model
= |E] Packagel E-£7 Package1
E ActDia B EA_Adkivityl
e (O rchiviby 1 Ackivity 1
= [Swimlane 1 il ‘:%
o -0 Ackionl
D nctivieyl

@ ActivikyInitial
&% ExpansionRegionl
i InterruptibleActivityRegionl

T ExpansionRegionl

{F: InterruptibleActivityRegion 1

=1 T Seimlans? - Swirlanel
@ Action] @ ActDia
@ activityInitial B3 Swimlanel
i b7 Swimlanez
by Activibyl

Figure 23 -- Nested Swimlane Tree View

After the process has been completed, the following transformation message will open:

Updated element <xmi:id>: Swimlane cannot contain some inner elements.
The XMI structure was fixed.

6.2.11 StructuredActivity

There are four elements that are classified as Structured Activity elements in EA:

(i) StructuredActivityNode element
(i) LoopNode element

(iii) SequenceNode element

(iv) ConditionalNode element

Most of the elements that are placed inside any StructuredActivityNode, LoopNode, SequenceNode,
or ConditionalNode elements in EA will stay in their original place (Figure 24).

EA {Before Conversion) MD {After Conversion)
= g tudsl £ [Madel
=- 3| Packagel I =] Packagel
£ Aetheal : S, Ea_fwctivity
SR g el ur ol Ackiviel i B-[#
<@ I Il @ AdicyInibial
@ Acianl - .
@ Adivililid i Ackiond
-] AuctLial

Figure 24 -- StructuredActivityNode Tree View

However, if there is any Activity, Swimlane, InterruptibleActivityRegion, ExpansionRegion, or another
StructuredActivity contained within a StructuredActivity, then it will be placed within a dummy Activity.
The created dummy will have the same name, and placed at the same level as the StructuredActivity
(Figure 25).

EA (Before Conversion) VD (After Conversion)

R £ Miode
= Bl ngagel E-F] Packagel
ActDia : i
[E}-ed EA_Activieyl
= (0 Struchuredctivity 1 Q - !

b < 3

& Actionl F Swimlans1
@ ActiviyInitial eI wimiane

& B8 Structuredctivicyl

O ExpansionRegionl b @ ActivibyInitia

CF G Interruptibledc ity egionl w0 Ackion]

- Swimlane 1 b i¥] InterruptibledctivicyRegion]

% FxpansionRegion]

@ AitDia

Figure 25 -- Nested StructuredActivityNode Tree View

After the process has been completed, the following transformation messages will open depending
on the Structured Activity elements that are involved:

® Updated element <xmi:id>: StructuredActivityNode cannot
contain some inner elements. An Activity with the same name as
the StructuredActivityNode was created to contain inner
elements.

e Updated element <xmi:id>: ConditionalNode cannot contain some
inner elements. An Activity with the same name as the
ConditionalNode was created to contain inner elements.

® Updated element <xmi:id>: LoopNode cannot contain some inner
elements. An Activity with the same name as the LoopNode was
created to contain inner elements.

® Updated element <xmi:id>: SequenceNode cannot contain some
inner elements. An Activity with the same name as the
SequenceNode was created to contain inner elements.

6.2.12 InterruptFlow

EA InterruptFlows, in some cases, are ControlFlow lines, and their image will be displayed as that of
the InterruptFlow line in the Activity diagram. An InterruptFlow is not a ControlFlow line if the Interrupt-
Flow line is drawned from one element, which is in an InterruptibleActivityRegion, to another outside

that InterruptibleActivityRegion. If there is such line in an XMl file, it will be imported as a ControlFlow
line, and its image will be changed to that of the ControlFlow line.

However, if either end of the lines is any of the following elements, it will be transformed into an
ObjectFlow line (Figure 26).

InputPin element

OutputPin element

ObjectNode element

CentralBufferNode element

DataStoreNode element

EA (Before Convarsion)

e

] I Tt B iy e o S S | acbionz
: If? Audizrd

'
i et
1 ContralF low lins -
] f_.-"" P |
| ::*:|-:|.nurr1 InberruptFlow e
- o=
1 Eanppti oo Huraliar |
i
1
i
1

1

ControlF low line]
'
'

. : R

MD (After Conversion)
Actiond Ationd
ControlFlee line | -~
e : e EnceptionHandler
Bl : Bz c*.':'-f'“"c*" Tiri
EwcepibonHaroleri

ObjectFlow line

Figure 26 -- InterruptFlow

6.2.13 ExpansionNode

An ExpansionNode is a Pin which can only be contained within an ExpansionRegion and will be
imported like any other Pin elements. However, if an ExpansionNode in EA is created inside another
element rather than an ExpansionRegion, that particular ExpansionNode will not be imported (Fig-
ure 27).

EA (Before Conversion)

E=ceptionHandler1

foctionBind

ExpanzianMode1

ObjectNode1

MD (After Conversion)

Mociel:
Packace:: todel :Package:
E&, A ctivity E&,_ Activwityd::
1A ctions ExceptionHandler
T
moclel:: }ogtiDnF'in‘l
Packace::
EA._A.ctivity A
1::Action2

/ Objecttode

<<para”"ﬂ:'%m:uaemsi|:|nr'd|:|de'1 i
hWodel: Package EA A ctivityl -
ExpansionFegion

Figure 27 -- ExpansionNode

6.3 Sequence Diagram Elements

6.3.1 Lifelines

All of the EA Lifelines will be imported, but a part or port within a Lifeline will be transformed into a
new separate Lifeline.

6.3.1.1 Gaps between Lifelines
The position and width of any Lifeline created in EA will not be imported. Every Lifeline will be given a

fixed value and position in MagicDraw. MagicDraw will place the first Lifeline on the left-hand side of
the diagram and the second Lifeline on the right-hand side next to the first one. The length of the gap

between the Lifelines will be fixed (Figure 28).

EA (Before Conversion) MDD (After Corwersion)

Chiuct’ Dajueciz r — r =
- : lObject1| .ommz|

Position, width and gap between
lifeline will be fixed

Chjuct® ‘ ‘ b ae2 ‘

Figure 28 -- Gaps between Lifelines

6.3.1.2 Lifelines Arrangement

A Lifeline can be nested within another component such as a Part or Port. If this is the case, every
component that is nested within the Lifeline and the Lifeline itself will be drawn separately in
MagicDraw, and they will be arranged in order depending on the position of their Lifeline lines (Fig-
ure 29).

EA (Before Conversion) MO (After Corwersion)

Classi |P\art‘| | - Parti | | :Class1 |pam| ;Portz|

Fail |

Fortl

] Faitz

«

/

/

Order by Lifeline line of EA

Figure 29 -- Lifelines Arrangement

6.3.1.3 Class, Part, and Port

Classes, Parts, and Ports have different characteristics from the others when they are represented as
Lifelines. They will be bundled according to their relationships. One convenient way to create a Class,
Part, or Port is through a Composite Structure diagram (Figure 30).

Composite Structure Diagram Containment Tree

Class1 | 5- H| package
| ﬁ composite structure diagram
| T sequence diagram
Fart1 - B Class1
= [x=] Partl
< Portl
FPortt
s
L
Sequence Diagram

Clanc

Figure 30 -- Class, Part, and Port
6.3.2 Gate

A Sequence Message whose tail is connected to a Gate (and the head connected to a Lifeline) in EA
will be transformed into a Sequence Message with its tail connected to one of the boundary lines of

the diagram in which it is contained, and the Gate itself will be removed (Figure 31).

EA (Before Conversion) MD (After Conversion)

Objectt - Obj ect2 . : Objectt || Object?
o |
T : :
I e [reeree T| N
R .
L | I
R st [:
) L : .
) ' : | '
. I P - e e *
R | |
mes1g- - .
— 3 S
|-

Diagram boundary = | =
s dine
I : R

Figure 31 -- Gate

Once the Gate has been removed and the transformation process has been completed, the following
transformation message will open:
Removed element <xmi:id>: uml:Gate.

A Sequence Message whose head is connected to a Gate (and tail connected to a Lifeline line) in EA
will be transformed into a Reply Message with its tail connected to one of the boundary lines of the

diagram in which it is contained, and the Gate itself will be removed (Figure 32).

EA (Before Conversion) MD (After Conversion)

Object1 Object1

I:I"- mes1()

mate

Diagram boundary |

line |
|
|

o }

Figure 32 -- Gate (EA) and Reply Message (MagicDraw)

The Diagonal Message and Reply Message will be connected to the nearest diagram boundary (Fig-
ure 33).

EA (Before Conversion)

Object! - Objectz - Objects - Objectd
T T T T
| | | |
| : o | [|
1] I]
1 . A |] l. .]
I 1 I 1
DL"O.[;' I | I
] gate1 .. . 1 . L . : : . :
| : i . = oppenp o] [i
| D—H? | |
. : . gatez - I . . : :
] e ol S sl f:
I 1 mes30) I 1
1] D 1
| | T |
| | | o=
1) I
|] | gated]
Al ! ! £ - aooc ik
1 1 I 1
1 1] 1
1]]]
1] 1 1
MD (After Conversion)
Object1 | B | [objects | [Objeas

1 mesi

2 masl

4. mresd -

I .

Object2
T
|
|
|
i
|
|
»>
- 'J 3 rmes3
|
|
|
|
|
|
|
|

Figure 33 -- Gate (EA) and Direction of Diagonal Message (MagicDraw)

Anything else connected to a Gate, except the tail of a Sequence Message, will also be removed. For
example, if the head of a Sequence Message is connected to a Gate, the Message will be removed.
If the tail of a Message is connected to a Gate, but the head is connected to anything rather than a
Lifeline line, the Message will be removed.

6.3.3 Endpoints

A Sequence Message whose head connected to an Endpoint and tail connected to a Lifeline line in
EA, will be transformed into a Lost Message, and the Endpoint element itself will be removed. Once
the process has been completed, the following transformation message will open:

Removed element <xmi:id>: EndPoint.

A Message whose head connected to a Lifeline line and tail connected to an Endpoint, will be trans-
formed into a Found Message (Figure 34).

EA (Before Conversion) MD (After Conversion)

e e | o [

Figure 34 -- Endpoint

Anything else connected to an endpoint, except the head of a Sequence Message, will also be
removed. For example, if the tail of a Sequence Message is connected to an endpoint, the Message
will be removed.

If the head of a Message is connected to an endpoint, but the tail is connected to anything rather than
a Lifeline line, the Message will be removed. Once the process has been completed, the following
transformation message will open:

Removed element <xmi:id>: Invalid Message. Source and Target of the Mes-
sage are not connected to any Lifeline.

6.3.4 Delete Messages

A Sequence Message whose property 'Lifecycle' is set to 'Delete’ (that causes the Lifeline, which is
being targeted by the Message, to end at some range after the point of contact), will be transformed
into a Delete Message, and the Lifeline that is connected to its head will end at the point of contact,
and all Messages will be removed after that point of contact of the Lifeline. MagicDraw will report the
following transformation message once each process has been completed:

Removed element <xmi:id>: Message is under Delete Message.

EA (Before Conversion) MD (After Conversion)
objett | [Objectz | [objestt | [Objestz |
L | .
| | ! S
} I b e [+| +
o S I |
j I | |
""" I R | : |
----- ih= © a0 0 o da oo LI
..... . SRR o
_____ 5 B W
""" [R
""" I mestg |
o R o
..... | . R : :
SRR X |
ol Ao o RREIS IR
""" 1 U S S SR
..... I; _
SEEREE |
I I

Figure 35 -- Delete Message

Under certain circumstances a Lifeline, which is connected to the head of a Delete Message, does
not end at the point of contact. Instead, an Activation will be created and started from the point of con-
tact, and then the Lifeline will just end at the end of the Activation. However, that Activation should not
interact with any Message (Figure 36).

EA (Before Conversion) MD (After Conversion)
i D == : [Object1 ‘ ‘ Object? ‘
T T ! o]
. ¥ [|
A . . . A
! mas10 -__:_ to ' [- -

: These Messages | |
- will be removed.

Figure 36 -- Special Case of Delete Message

Under certain circumstances, an 'X' sign (normally will be drawn after a Delete Message) in EA will be
drawn on a Lifeline line whose Lifeline is being pointed by a Create Message. If this is the case, the

'X" sign has no significant meaning and can be ignored (Figure 37).

EA (Special Case)

Objectl T o
T T
S R
|[Ohbject? |[
R IIZZtZIZ
....I....
|
....I....
Sl R
1. S
i R I
e T
- f - I I
.. .y .-. ... Canbeignored.
....I.... P -
N S .--f
B
_‘['. o wreom %o oo
L
R
A
.
1
.
S
Figure 37 -- X' Sign
6.3.5 Branch Messages

If the Branch with previous Message option of a Sequence Message is enabled, the tail of the mes-
sage will be connected to the tail of its previous Message on the same Lifeline line. The message will
be called 'Branch Message' from that time on.

Every Branch Message in EA will be transformed into a normal Message in MagicDraw (Figure 38).

EA (Before Conversion) MD (After Conversion)
:‘ Dbje =4 Chiet ‘ :::‘ 0b 202 Obje = ‘: ot | | Oﬁ:m | [oomen | [oviea
: |
LaN] I L _L -

L U

Y

0

(Branch Message are in blue color)

Figure 38 -- Branch Message

After the transformation process has been completed, the following transformation message will
open:

Updated element <xmi:id>: Branch Message updated to regular Message.

6.3.6 Boundaries, Controls, and Entities

The Boundary, Control, and Entity elements in a Sequence diagram context in EA are Lifeline ele-
ments whose stereotype property type is set to 'Boundary', 'Control’, or 'Entity’. They will be imported
like any other normal Lifelines (Figure 39). However, an XMl exported from EA has a <<entity>>
stereotype problem that causes the Lifeline with the <<entity>> stereotype applied unable to show
the stereotype icon. You can solve this problem by placing an <<entity>> stereotype in
EA_Profile.xml so that the converted model can use it instead of the one from EA.

EA (Before Conversion)

Display picture Containment Tree
ff@ifiif@fffff@iif 2| Packagel
EBemEmo Gmpd gy T [SeqDiagram |
R S A R A I gahuundarwﬁuundaw
ak | SEREES = «cantrals Cantrel
e I e = sentitys Entity
e I 0
e | .
R | R
R | S

MD (After Conversion)
Display picture Containment Tree
__ B[] Packagel
'H"_"' : : L : . : ! E-= EA_Collaborationl
] - -) : S Lt :
whoundarys ©wcortrols o aertitys =3 @% Interactond
" Boundary ° Control ~ Entity e-1H] Seqliagram
T P D N - B -Boundary <boundary=

i B -Conkrol <conkrols
q- B -Enkity ssnkibys
T & -Boundary

feo 3 -Cankral
S feo 3 -Enticy

Figure 39 -- Boundary, Control, and Entity

6.3.7 Actors

An Actor element in the Sequence diagram context in EA is not a regular Lifeline element. It is a spe-
cial Lifeline element whose property type is 'uml:Actor'. It will be transformed into a regular Actor and
a Lifeline element will be created to represent it. Figure 40 below shows an Actor element in the
MagicDraw containment tree.

EA (Before Conversion)

Display picture Containment Tree

S =I- | 5] Packagel
R . S T Seqhis

Adtor! b3 Auctor |

MD (After Conversion)
Display picture Containment Tree

_ E-E7 Packagel
A %
: L B EA_Colabaration
Lo El@ E& Inkeractionl
B - [l Seqlia
| - = +Actor] : Model::Packagel::Actorl
L L 3 ckor] : Maodel Packagel::Actorl

Figure 40 -- Actor

6.3.8 General Ordering

Every General Ordering element in EA will not be imported because MagicDraw does not support it in
the current release (Figure 41).

EA (Before Conversion) MD (After Conversion)

...

Doject : Ctjzt2 : O ectd | Objectt || Object? | | Object3 |

Figure 41 -- General Ordering

After the transformation process has been completed, the following transformation message will
open:

Updated element <xmi:id>: General Ordering will not be imported.

6.3.9 State Invariant

A State Invariant in EA will be transformed as it is (Figure 42). MagicDraw does not support State
Invariants in the current release.

EA (Before Conversion) MD (After Conversion)
oo N B

______ R EEE !

: |

______ I
...... Lo
______ : j| . . | | . .
...... [: : : : : :
C fstatedl : : : L istiter} |
PI.+.
...... ;...iiii:::iiiiiiii I
e I
fﬁﬁﬁff:fffffffﬁﬁﬁffffffff '
]
Figure 42 -- State Invariant
6.3.10 Continuation

Continuations from EA can be imported to MagicDraw. They are viewable in the containment tree in
MagicDraw, but without a picture displayed in the diagram (Figure 43). MagicDraw does not support

Continuations in the current release.

EA (Before Conversion) MD (After Conversion)
i Object |
__________ .
...... I »
SR SO
T sl ’
;g—mgmm) - - I
...... — R
______ I
S
B[] Package?

E}--t:::r Ea_Collsbiorationz
- Eb Inkeraction?

] comkinuation 1
Lo 3 +0bject]

Figure 43 -- Continuation

After the transformation process has been completed, the following transformation message will
open:

Updated element <xmi:id>: Continuation will not be displayed.

ENTERPRISE ARCHITECT IMPORT PLUGIN FOR
MAGICDRAW

6.3.11 Diagonal Message

A Diagonal Message is a Message whose destination's height is adjustable (Figure 44). A diagonal
Message may change Activations.

.

Activation should be extended

Figure 44 -- Diagonal Message

57 Copyright © 1998-2011 No Magic, Inc.

To create a Diagonal Message in EA, you need to specify the Timing Details property of the Message
and add a numeric value to the Duration Constraint input field (Figure 45).

@ Message Properties...
Adwanced k
Attach Note or Constraint...

Activations k
Caregion L4
Timing Details.. .

(21 Appearance...
"= Set Label Visibility...

UML Help Timing Delails %]

% Delete Connector

[ruralion Canstizint:

Lruration Canztizi

/ Timig Constrait:

. . Timryy Obzer=alon
set 'Duration Contraint’ value

Falion Observalior: |

Figure 45 -- Creating a Diagonal Message

6.3.12 Synchronous Message Behavior

The placement of Synchronous Messages in EA will affect the way Activations are created.
6.3.12.1 Order

A Message in EA has a 'Sequence Number' that indicates the order of the message in the diagram.
This information can be found in the exported XMl file and knowing it helps predicting the way how
Activations will be created. The order starts from the top and goes downward, so the first Message in
the diagram is the one that is drawn at the top of the diagram and it will have its Sequence Number
set to '1' (Figure 46).

Figure 46 -- Message Sequence Number

6.3.12.2 Process
Generally, in EA, any two Synchronous Messages will be in the same process if they meet the follow-
ing conditions (Figure 47):

e Both of their tails placed on the same Lifeline.

e The head of the upper Message and the tail of the lower Message are on the same
Lifeline.

O bje el 0L je ol
..... II
..... o

1 --l—l-l
e
............. | [
............. Mo o = o =
............. 1 - - - - -
............. |- - - - -
e
..... L
..... L
..... L

=T B Objrulz - Objesls

~ condtion2

Figure 47 -- Process

6.3.12.3 Activation Level

The Activation Level starts from level 0 and will be increased in increments of 1 as an ongoing pro-
cess receives a Message that is not a Return Message (Reply Message in MagicDraw) (Figure 48).

Dbj =ctl - Objectz

Objaet - Objactz

Return Message

Figure 48 -- Activation Level

6.3.13 Asynchronous Message Behavior

If a Message is an Asynchronous Message in EA, then its source Activation will end if there is no
other Message in the same group that has a higher Sequence Number, and its source will be

attached to the same Lifeline (Figure 49).

Souce Activationof |
anAsynchronous ends as soon pgu . . . lo v ooowoooae looaasy
as there is a Message in some b’ L e

next order pointstothe -
LifeLineLine thatitison. =

L PR

...... e

...... e

...... e
Objectl OLjeutz OLjeuld

Figure 49 -- Asynchronous Message

6.3.14 Return Message Behavior

A Return Message in EA is called a Reply Message in MagicDraw. One of its characteristics is that
when it is pointed to an Activation, it will not create an Activation at the top of the existing Activation

(unlike other normal Synchronous Messages) (Figure 50).

Obje ot 5 5 o u Objectz

Figure 50 -- Return Message

6.3.15 Activation Options

You can control how Activations behave at some level through the Message options, which you can
access by right-clicking any Message, and then select the Activations option. However, MagicDraw
does not support Activation Options in the current release.

Objectt

Objects

Figure 51 -- Activation Options

6.4 Communication Diagram Elements

6.4.1 Object, Boundary, Entity, and Control

All of the Object, Boundary, Entity, Control elements in EA are InstanceSpecifications. After conver-
sion, their UML element types will remain, and a Lifeline and an OwnedAttribute element will be cre-
ated to represent each of them in the Communication diagram in which they are in.

EA (Before Conversion) MD (After Conversion)
: e B
Dbjact
- 3 Eouncs 3
@ e
Eloundargr '-- . -1-
O o eenra)
Coantral . : :
e e
Entity : : :

Figure 52 -- Object, Boundary, Entity, and Control (Diagram View)

EA Contamment Tree MD Containment Tree

D Model
- |8] Parkagen =7 Parkagen

¥2 Commbia b (31 Boundary

M «boundarys Boundary =1 Conkrol

£ econtrals Contral =1 Entity

] «entitys Entity -+ =1 Object

21 Object B} EA_Collaboration?

=B} EA_Interackiond

CarmmbDiz
-« = -Boundary
-~ B -Conkrol
- = -Entity
..... = 'ObjE—'Et
- [-Boundary
e 23 =Conkral
o @ -Entity
-« & -Object

Figure 53 -- Object, Boundary, Entity, and Control (Containment Tree)

Other elements that can be drawn in a Communication diagram will be handled in a similar manner.

6.4.2 Exception Elements

Some of the elements that can be drawn in a Communication diagram using EA are not supported by
MagicDraw, consequently, their displaying parts will not be imported. Such elements are Package,
Activity, Action, DiagramFrame, State, Interaction, ExceptionHandler, CentralBufferNode, Interrupt-
ibleActivityRegion, MergeNode, Trigger, ExpansionRegion, and InteractionFragment.

dimgramframe /

| Fackage1
activityl irt interaction

state scentral Buffens
Setion] sertralbufernadz 1

|

gparallely expansionregion

rirderrupii bl eactivityregion 1| 0 [a- ————————
|

mergenoded S e —

soepti onhand| ar

—— -

I
. |
! |
! |
I |
! |
I |
I |
1

alt irteractionfragmert /
triggert

L

Figure 54 -- Exception Elements

6.4.3 Realization and Nesting

The Realization's element type in EA is 'uml:Realization' and the Nesting's element type in EA is
exported in XMl as 'uml:Dependency'.

The Realization and Nesting lines in EA are not supported in the Communication diagram; therefore,
only their model data, not the displaying parts, that will be imported.

EA (Before Conversion)

Object1 Realization I Objectz

Object3 Nesting b jcts

Figure 55 -- Realization and Nesting

6.4.4 Association

Every Association relationship that is drawn in a Communication diagram in EA will have a Connector
line created for each of them, and the elements that are attached to the Association line's both ends
will have a Lifeline element created to represent each of them. So, the Association lines and the ele-
ments that are attached to them will not be removed, but the elements that will be shown in the
MagicDraw's diagram frame will be those of the Lifeline elements and the Connector lines that are

created to represent them (Figure 56).

EA (Before Conversion)

L) Model
= = | 8] Packaged

'EE ComrmDia
2 Actorl
% Actarz

#lsoume’ ;
.. ez itargat]_ aszso2 D Db]ECtl
j it O] I B Objectz

{eanstaintz,

Adm {“ nion, ;
saqLence. gensEaintl] Aclorz

addﬂnw
Paa a}

azod

MD (After Conversion)

-CJ Model
B- D Packaged

E - Relations

[-7 Association:assol[Model: :Packaged: Ackorl - I

& BesocationzassoZ[source] Model: Package
,,e“ Assodationasso3[Model Packages: fckarl - M
T Actorz
- % mctorl
-= Object1
-E= Object2
i EA_Collabaratian 1
BB EA_Inkeraction

gee01

P B % E <% Relations

Actort | S : l -* Connector:assai[Model Packaged B4
: L Byt Connectoriasso2{Model Packaged nEA.

-4 Connectariasso3[Model Packaged EA_

: CommbDia*

= -ackor] : Model: :Packaged:: dckorl

= -Ackor? : Model::Packaged:: Ackor?

1 -Ackorl : Model:Packaged b Ackorl

L@ -hrkor2 | Madel ‘Packaged Ackar2

ctar]

5503

Figure 56 -- Association

If an Association line is connected to the InstanceSpecification elements, its data will be removed. If
an Association line is linked between two InstanceSpecification elements, it will be transformed into

an InstanceSpecification element. This is one of the constraints that belongs to the Communication

diagram.

EA (Before Conversion)

[Model
Dbjectt s Dbject? = | 8] Packaged

EE CommbDial
M ohbiect1
0] object2
] object3
M objectd

Object? con? Objectd

MD (After Conversion)

~E3 Model
Object? Etl Packagel
_E |:D|-|1
= cond
=1 Ohijeckl
=1 Ohjeckz
=1 Objects
i = Objects
E}-+=% EA_Collaborationt
E]-E8 EA_Inkeraction]

& Relations
CommbDial
- B -Ohjeckl
- = -Objectz

= -Object3
-~ = -Object4
- -Object1
- & -Ohjeck?
- 3 -Ohject3
- O -Ohijectd

Chiectl
cond

Ohjectd Ohjectd

con

Figure 57 -- Association Line between InstanceSpecifications

6.4.5 Message

Messages can be created on Connectors and will be imported to MagicDraw (Figure 58).

EA (Before Conversion)

1: mesif) —p»

Objact 1.1: mes20 —> Objectz

1.2 masin ——

MD (After Conversion)

...

Figure 58 -- Message

6.4.6 Operations

An InstanceSpecification cannot contain Operation elements. If the XMI file from EA has some

InstanceSpecification elements that contain Operation elements, those Operations will be removed
(Figure 59).

EA (Before Conversion) MD (After Conversion)
{ g Model 7 Model
= J Packagel EIZ'__| Packagen
=2 Commbia EI Objectl
7 objectt i1 Ohjectz
=[] Objectz Iél--tii_iﬂ EA_Collaboration1
5 opti(boolean) E)-E3 EA_Interactionl
5 0p2i] El- > Relations
\ { st Connectar[Model:Pack,
\ CommbDia®
f- = -Object1
COper ations - = -Ohjectz
= O -Dbject]
o & -Objectz

Figure 59 -- Operations

6.5 State Machine Diagram Elements

6.5.1 StateMachine

After conversion, a dummy StateMachine element will be created. The dummy StateMachine is either
created by XMI exporter from EA or by EA Import plugin. A StateMachine diagram will be placed
inside the dummy StateMachine and a dummy Region element will be created to contain all of the
StateMachine elements (Figure 60).

EA (Before Conversion) MD (After Conversion)

Flj StateMachine Dummy StateM achine
| B EA_StateMachinet & element.
(55 stateMachine
-kl EA_Regionl <— pummy Region
-0 Statel element.

=|-- | Bl SkateMachine:
(52 StateMachine
2D Statel

Figure 60 -- Dummy StateMachine Element and Dummy Region Element

6.5.2 State

6.5.2.1 State Containing Other Elements

A State element that contains other elements will be transformed to a Composite State and all of the
contained elements will be placed inside the Region element of the State element (Figure 61).

Containment tree

EA (Before Conversion) ~MD (After Conversion) Statel shows
= | E] StateMachine) I:}[“_| St_atel\"lachlne . Composite State icon.
[=8) StateMachine | B[Ea_StateMachinel
= O Statet L[5 stateMachine
@D Statez E}--t.‘_.‘l E&_Regionl
@ Inivial El- @ Statel All child element will be
E}- k= EA_Region2 placed inside Region
PO StateZ g element.
_ -1 itial
Diagram View It
EA (Before Conversion) MD (After Conversion)
Stated

State]

. State? . State?
Iritid Inia

Figure 61 -- State Containing Other Elements

6.5.2.2 State Containing StateMachine

If a State element contains a StateMachine element, the StateMachine element will be brought out

and placed at the same level of the Region element of the State element.

Containment tree
EA (Before Conversion)

- |&] stateMachine
(=%) StateMachine
= O Statel
@ Initial
= @ StateMachinel
[=5) StateMachinel

Diagram View
EA (Before Conversion)

State
Statebachire1

Initial

MD (After Conversion)
EIE] StateMachine

B[EA_StateMachinel

. gt ateMachine StateMachine1 will be placed

E"'t{_ﬂ EA_Regionl at the same level of Region
E} & Statel element of the Statel.

B~k EA_Region2

{.. @ StateMachinel

: L @ Initial

El-[E StateMachinel
E"] StateMachine1

MD (After Conversion)

Statel
StateMachine? :
Statetdachinet
. o
Initial

Figure 62 -- State Containing StateMachine

6.5.2.3 State Containing Attribute and Operation

If a State element contains Attribute and Operation elements. The Attribute and Operation elements
will be removed both from the Diagram view and Containment tree (Figure 63).

Containment tree

EA (Before Conversion) MD (After Conversion)
= 3] StateMachine) .
@ E’El StateMachine At.I]‘IhutE and .
P . Operation element will
5 O Statel . B[] EA_StateMachinel be removed.
8 @ attri it atetachin
& operl() El-Fx1 EA_Region]
e (O Statel

Diagram View

EA (Before Conversion) MD (After Conversion)

: . L S Attribute and
i ~ Shate] Operation element will
. Sate ‘/ be removed.
j attrd: int I
N+ do/foper

Figure 63 -- State Containing Attribute and Operation

The following transformation messages will open:
® Removed element <xmi:id>: State cannot contain Attribute.

® Removed element <xmi:id>: State cannot contain Operation.

6.5.2.4 State Containing Diagram Element

If a diagram element is placed inside a State element, it will be removed (Figure 64).

Containment tree

EA (Before Conversion) MD (After Conversion)
- 4| CempositeState F}E CompositeState
[5§) CompositeState E@ E&_StateMachinel A diagram element that
= @ Statel LB placed inside State
[=g) Stakel E1-t=f EA_Region] /element will be removed.
L) Statel
Diagram View
EA (Before Conversion) MD (After Conversion)

State | State

Figure 64 -- State Containing Diagram Element

The following transformation message will open:

Removed element <xmi:id>: State cannot contain diagram element.

6.5.3 StateMachine Placed on a Diagram

If a StateMachine element is drawn in a StateMachine diagram, an additional SubMachineState will
be created to represent the StateMachine (Figure 65).

NOTE A SubMachine State is a State whose SubMachine property is set to a
StateMachine.

Containment tree

EA (Before Conversion) MD (After Conversion)
- |2] stateMachine B3 StateMachine _ _
(%8 StateMachine i [E-{# EA_StateMachiney ~ SubMachine State will be
H T - created if user draws
@ Statet - - EEEEETE statemachine elementin
- @ stateMachinel . | Brk:f EA_Regionl the diagram.
(58) StateMachinel fn O Statel
P L@ StateMachinel
B8 StateMachine!
{55 StateMachinet
Diagram View
EA (Before Conversion) MD (After Conversion)
Iy - State Machina StateMachine! = StateMachinel
. : N
— .

Figure 65 -- StateMachine Represented by a SubMachine State

6.5.4 Object
An Object element placed in a State Machine diagram will be removed from the Diagram view, how-
ever, its data will be preserved in the Containment tree as an InstanceSpecification (Figure 66).

Containment tree
EA (Before Conversion)

2] stateMachine
(=3 stateMachine
1 obiject1
D Statel

Diagram View

EA (Before Conversion)

State1

Object1

MD (After Conversion)

E}-F7 StateMachine Object data will be
[I — m reserved.
i B~ EA_StateMachinei
L [B¥ statemachine
Eb k= EA_Regionl
fon (D) Statel

MD (After Conversion)

Statel

Object will be removed.

Figure 66 -- Object

The following transformation message will open:
Removed view <xmi:id>: The view represents element that does not support in

State Machine Diagram.

6.5.4.1 Object Containing State Machine Element

In EA, an Object element can contain a State Machine element. After being imported to MagicDraw,
the State Machine element that is placed inside an Object element will be removed both from the Dia-
gram view and Containment tree, however, the Object element data will be preserved. All of the
Object element data will be placed at the closest owner package of the Object element (Figure 67).

Containment tree

EA (Before Conversion) MD (After Conversion)
= |[=] Object1 . State Machine element
=2 Object1 L—}l_‘_| Ob]ect.l - that is placed under Dbject
= 1 object1 ! [~[(3= Objectl element will be removed.
] objectz = COhject2
@ Statez EA_StateMachineZ
@ Initial B ‘5’]
= @ StateMachinel é—--[:::i E.D. Regionz
[53) StateMachine1 L. Statel All Object element will be
(I Skatel : placed at a closest owner

package of the Object element.

Diagram View
EA (Before Conversion) MD (After Conversion)

Stalel :
- S - State Machine element that
: is placed under Object

— element will be removed.

otjest T
/J' ™
p :
I p ™
. State? 4 . . N .
Initial / \ :

| \
|I II

Objectz | |
StateMachine | ! |

Figure 67 -- Object Containing State Machine Element

The following transformation message will open:

Removed element <xmi:id>: Invalid element. Instancespecification can not
contain element from State Machine.

6.5.5 Synch

A Synch element will be transformed to a Junction element (Figure 68).

Containment tree

EA (Before Conversion) MD (After Conversion)
= 2] StateMachine E|‘_“| StateMachine
[Z3) StateMachine E]@ EA_StateMachinel
@ Synch -5 stateMachine
® Junction B EA_Regionl Synch will be changed
i i 4@, Junction to Junction.
i i@ Svnich -
Diagram View

EA (Before Conversion) MD (After Conversion)

: ~Junction - Junction

Synch will be changed

. ﬁ to Junction.

Synch : - Synch

Figure 68 -- Synch

The following transformation message will open:

Updated element <xmi:id>: Synch updated to Junction.

6.5.6 EntryPoint / ExitPoint

An Entry or Exit point, which is placed inside a State (or StateMachine) element, will be placed out-
side a Region element of its parent element in the Containment tree and relocated to the nearest

boundary of its parent element in the Diagram view (Figure 69).

Containment tree

EA (Before Conversion)

- 2] stateMachine
[58) StateMachine
—|-- @ Statel
@ EntryPointl
@ ExitPoint1

Diagram View
EA (Before Conversion)

Q &

EntryPainit

Statet

EntryPoint

- EntryPoint- {)

MD (After Conversion)

EH_:| StateMachine
| B EA_StateMachinel
E- k= EA_Regionl
El- & Statel
L O EntryPoint
Lo @ ExitPaint
L pzz| EA_Reqgion2

MD (After Conversion)

Stated

@. ExitPoird

: ‘Entry point and Exit point
‘\-\ will be relocated to the
S - nearest boundary of thier

El‘ﬁp’_P\U"'ﬁ parents element.
Sthuat

ExitFairt

Figure 69 -- Entry/Exit Point

6.5.7 Object Flow Connecting State Machine Elements

An Object Flow connecting the elements in a State Machine will be removed both from the Diagram

view and Containment tree (Figure 70).

Diagram View
EA (Before Conversion)

* [Object Flow]

MD (After Conversion)

.f . S State1
@)
Iniial

o o \\

Object Flow will be removed.

Figure 70 -- ObjectFlow Connecting State Machine Elements

The following transformation message will open:

Removed element <xmi:id>:

Invalid ObjectFlow. Source or Target of the

ObjectFlow are connected to element from State Machine.

6.5.8 Information Flow Connecting State Machine Elements

An Information Flow connecting the elements in a State Machine will be removed from the Diagram
view, however, its data will be preserved.

Containment tree

EA (Before Conversion) MD (After Conversion)
- | 2] stateMachine B[] StateMachine
- S B2 Relations
ﬁl il i £y Information Flow:Information Flow[Stateiachine i E4

& Statel
= @ stateMachinel
(38) StateMachinel

A_StateMachinel

=iftateMachine |

| EA_Regionl BsiEeii i
ata of Information
O atel Flow will be reserved

=

@ StateMachine!
B StateMachinel

| SkateMachinel

Diagram View
EA (Before Conversion)

StateMachine1

Stated

informetion Flow
«flows
Inform ation Flow will be removed.
MD (After Conversion)
: : e N Statehfaching! ;
- ™ StateMachine
S
Stated / \
Ilf .II
'. |
\
AN /s
\\ //
e - oo

Figure 71 -- Information Flow, Trace, and Dependency

The following transformation message will open:

Removed element <xmi:id>: The view represents element that does not sup-
port in State Machine Diagram.

6.5.9 Trigger

If there is a Trigger element that is not related to any Transition line, a dummy StateMachine will be

created to hold the Trigger element. The dummy StateMachine will be named after the parent pack-
age name concatenating with 'trigger’.

In the case of a Trigger element that is related to Transition, the data of the Trigger element will be
placed inside its parent Transition. Each Trigger element will be given an event type, which is repre-

sented by an Event element. After conversion, the Event will be placed at the closest owner package
of the Event.

Containment tree

EA (Before Conversion) MD (After Conversion)
= [&] stateMachine El = -Slzgt:::a;g::Machmel Trigger element that is related to
[55) StateMachine i '%'n_ any T ransition line will be placed
D Statel B b1 EA egionl inside its parents T ransition.
& Statez s om)
[triggerl E‘ / Relatlons. : / . .
; i B Transition:[StafeMachine::EA_StateMac|
[trigger2 i i [F] Trigger:
[trigger3 D Statel
. Statez
[£] StateMachinetrigger Trigger element that is not related
Ef] Trigger: to any Transition will be placed
L[] Trigger: inside a dummy StateM achine.
-# CallEvent
- SignalEwvent

- signalEvent “®—— Eyentelement.

Diagram View
EA (Before Conversion) MD (After Conversion)

Statel . State2

oo d : ----- : - . o) - [1
| tiggez o tiggerd N /,"I \ J
\x_ ‘\ e -

Trigger will be removed
from Diagram view.

Figure 72 -- Trigger

6.5.10 Self Transition

Most of the elements in a StateMachine diagram can have a self transition, except for the Initial, Final,
and History elements. The self transition in these three elements will be removed from the Diagram
view, but the data of the self transition will be preserved in the Containment tree.

Containment tree

EA (Before Conversion) MD (After Conversion)

3- B} StateMachine

-1 4| StateMachine
[55) StateMachine E1-[Z3 EA_StateMachine!

@ History]St ateMachine |
@ Final Bk EA_Region]
@ Initial B Relations
L ke /" Transition:[StateMachine :EA_Statela

eMachine::EA

/" Transition:[5t
L A Transition:[StateMachine :EA_Sta
@® Final

L@ Histo
» ('. Initi :’Y Data of Self T ransition
It will be reserved.

Diagram View
EA (Before Conversion) MD (After Conversion)

Self Transition in these
element will be removed.

> Y

S = 5
~—Initisl Final istory—"
Initial Final History T s B

7
|
\

Figure 73 -- Self Transition

The following transformation messages will open:
® Removed view <xmi:id>: Self Transition does not support for
Initial.
® Removed view <xmi:id>: Self Transition does not support for
Final.
® Removed view <xmi:id>: Self Transition does not support for

History.

6.5.11 Removed Element

An element, which is not the element of a State Machine diagram, for example, Class, Actor, Use-
case, or Action, and drawn in the State Machine diagram, will be removed from the Diagram view.
However, its data will be preserved in the Containment tree.

Diagram View
EA (Before Conversion) MD (After Conversion)
¥ ~ clalss. | | Statel /_.,..---""'____ ______""“-a.,_\

An element is not element of
State Machine diagram will be
removed from Diagram view.

Figure 74 -- Removed Element

If an element, which is not the element of a State Machine diagram, has a child element and it is
drawn in the State Machine diagram, the element will be removed from the Diagram view, however, its
data will be preserved in the Containment tree.

Diagram View
EA (Before Conversion) MD (After Conversion)
tlass State! /__ T __\
. [\\-_______ //
Initial | . / ——
actor

Initial element will be removed
from Diagram view.

Figure 75 -- Removed Element with a Child Element

The following transformation message will open:
Removed view <xmi:id>:The view represents element that does not support in

State Machine Diagram.

6.6 Composite Structure Diagrams

This section will describe some additional EA specific Composite Structure diagram information.

6.6.1 Import Elements

One way EA is different than MagicDraw is in how the Composite Structure diagram's content ele-
ments are designed. Table 11 below shows the differences by focusing on the EA’'s elements and how
they will be transformed or converted into the format that MagicDraw can correctly load and display.
The element names shown in the table are the same as those in both EA and MD 's GUI. The con-
tents in the bracket ([...]) are the XMI element type references.

Table 11 -- Differences between EA and MagicDraw

Enterprise Architect MagicDraw

Interaction

Class [uml:Class] Class [uml:Class]

Interface [uml:Interface] Interface [uml:Interface]

Part [uml:Class] Part [uml:Property]

Part [uml:Property]

Port [uml:Port] Port [uml:Port]

Collaboration [uml:Collaboration] Collaboration Use [uml:Collaboration]

Expose Interface [not exist]

Connector [element type is not exist] |Connector [uml:Connector]

Assembly [element type is not exist]
Delegate [element type is not exist] | Connector [uml:Connector]

Role Binding [uml:Dependency] Role Binding [uml:Dependency]
Represents [uml:Dependency] Dependency [uml:Dependency]
Occurrence [uml:Dependency] Dependency [uml:Dependency]

6.6.2 Conversion Details

6.6.2.1 Dummy Class

In MagicDraw, the Composite Structure diagram needs a Context element to contain itself, whereas in
EA, there is no Context element. After conversion, a dummy Class element will be created to repre-
sent the Context element of Composite Structure diagram.

A dummy Class will be named after the closest owner package of the Composite Structure diagram.
The Composite Structure diagram and all of the Composite Structure elements will be placed inside
the dummy Class element.

EA (Before Conversion) MD {(After Conversion)
Dummy Class element.

5. [Package1 Iﬁ Packagel /
E-E Packaget

ﬁ CompositeStructureDiagran

----- CampoziteStructurebiagranm

Figure 76 -- Dummy Class
6.6.2.2 Class

The Class element data will be normally copied even if the Class element is drawn in a Composite
Structure diagram. A Property element will be created to represent the Class element. The Property
element will be named after the Class element.

Contanment tree

EA (Before Conversion) MD (After Conversion) property element that
represents a Class element
<[] Packagel
Bl Parkage! DE Clgssl
EEarsnsplositestructureDiagram EE Package1
= ----- & -Class] : Model;:Packagel::Class1

b Cu:umpu:usiteStructureDiagram

Diagram Yiew
EA (Before Conversion) MD (After Conversion)

Class1
Class1

Figure 77 -- Property Representing a Class Element

Class with Attributes and Operations

The Class view in EA will be converted to a Part in MagicDraw; therefore, attributes and operations
will not be shown in the Composite Structure diagram.

Contanment tree

EA (Before Conversion) MD (After Conversion)
B Packagel -3 Ek;lgdi
ﬁ CompositeStractureCiagram E . = . .
Class1 PPl -akbribute s ink
= =il

i B toperation() : void
B-E Packags!
0 -Classl : Classl
]| CompositeStructureDiagranm

e atbribute
» operation()

Diagram View
EA (Betore Conversion) MD (After Conversion)

Part element cannot show
Attribute and Oper ation.
Clas=1 Classi1 ‘/

atfributa: int

+ operation) © waid

Figure 78 -- Part Element after Conversion

6.6.2.3 Interface

The Interface element data will be normally copied even if the Interface element is drawn in a Com-
posite Structure diagram. A Property element will be created to represent the Interface element. The
Property element will be named after the Interface element.

Contanment tree

EA (Before Conversion) MD (After Conversion)
Property element that
ﬂ Packagel [Package1 represents an Interface element
ﬁ Composite Struckurebiagram EE Fackagel
= zinterfaces Interfacel . -Interfacel : Interfacel

PR CorpositeStruchur eDiagram
b (T Inberfaced <inkerfaces

Diagram Yiew
EA (Before Conversion) MD (After Conwversion)
B qin-terfa-ce; | Interfacet
Intarface 1
Figure 79 -- Property Representing Interface Element
6.6.2.4 Part

There are two types of Parts: (i) Part with port and (ii) Part that sets type to other elements.

(i) Part with Port

If you assign the type of a Part element to a Class, Component, or Node, the Part element can have a
Port (see 6.6.2.5 Port for more information).

In the case of a Part is not nested to any element, the Part element will be exported from EA as a
Class; therefore, this Part element can have a Port.

Containment tree
EA (Before Conversion)

H] Packagel
ﬁ CompositeStructureDiagram
= (=] Partl
<1 Prirtt

Diagram View

EA {Before Conversion)

Fort

MD (After Conwversion)
Part element is exported
£3 Mackagel fromEA as a Class element

B Package!

b g -PaMCL : Partl

Cormposite Sk eDiagrarn
== Partl

------ b +Partt

MD (After Conversion)

Partl Fortl

Figure 80 -- Part that does not Nest Element(s) with Posts

In the case of a Part is nested to an element and the type is not set, then the Part type will be used to

set type to a dummy Class. This particular Part can have a Port.

A dummy Class will be created at the same level of the Part element that sets type to it. The dummy

Class will be named after the Part concatenating with '_type'.

Containment tree
EA (Before Conwversion)

MD (After Conversion)

P art element set type

(5] Packagel 3 Packagsl ko this Dummy Class
ﬁ CampositeStructureDiagram E‘E Class1
= Class1 PO +Partl :PartlA_ty/pe/
=~ [n=] Partl EIE Fartl_bype
<3 Purll L B PArH
BE-E Package!
b (3 Partd
o Class1 : Classl
CompositeStructureDiagram
Diagram View

EA (Before Conwversion) MD (After Conversion)

Clas=1 Clas=1

Fact : 2 Partl
Por [—|

Figure 81 -- Part that Nests Element(s) with Post
(ii) Part that sets type to other elements

The type of Part can be set to another element, for example, a Class, Actor, Component, or Usecase
by right-clicking the Part element and select Advanced > Set Property Type > Select Property
Type (Figure 82).

i 1 -
.;E‘““;‘:it‘:“‘j EEEE B Select Property Type

o Proparte=s... Alt-+Enter S
: aaaaaaaaaaaaaa .-| Erowse | S=Q|:h |

Advamced k Custorn Propertes,,,
) - n = e - F
W (Create Linked Dooument Chrl+alt+D . Set Property Type... InM
Adc ko = Ly =]
® multipidty.., B
B ¥ = 2] DumnmyClass
&l SetProperty Values F pckor
rarsfarm. .. Cirl #H - @ Usecase
. Embedded Blements] o B Clazs
= ccacacosacacs Mods
S Feature Visbity, ., Crl45hift+y <nnns

| Y Lock Bement...

|[#] selctabe
[uiesble
Appesrance]
Z-Ordler L

Figure 82 -- Setting Part Type

If the Part type is set to a type that cannot be the owner of a port, the port will be removed.

In MagicDraw, the Property element data cannot have any elements, whereas in EA, it can have any
elementst; therefore, if you draw a Part element and it has an element inside it, that particular element
will be relocated to an element, which is the Part type.

In the case of a Part is not nested to any element, the Part element will be exported from EA as a

Class; therefore, the element inside the Part will not be relocated. If that particular Part assigns a type
to other elements, its type will always be set to Class.

94 Copyright © 1998-2011 No Magic, Inc.

Containment tree
EA (Before Conversion)

B Packagel
ﬁ Composite Strockure
Class1
= [E=] Partl :Class1
Class2
=] Partz

Diagram View
EA (Before Conversion)

Fart1

Parii :Oass1:

MD (After Conversion)

£ Packagel

i Classi

E}Q Packagel Class? and Part? are
i e -Partl : Partl both under Partl.

ComposikesstructureDiagram
E}E Part1
b {1 +Part2

----- O -Classz @ Class2

------] Classz

MD (After Conversion)

Paril

Class?
Fart2

Figure 83 -- Part that Sets Type to Other Elements

In the case of a Nested Part whose type is set to another element, for example, a Class, Actor, or
Usecase, and this Part contains Nested elements, all of the Nested elements of the Part will be relo-
cated to the element that is the type of this Part.

Containment tree
EA (Before Conversion)

MD (After Conversion)

Mested element of Partl will

[B] Package1 -7 Packagel be moved to Class2
i CompasiteStructureDiagram EIE (lass1
= Class1 i Rty Parkl : Class2
[=:] H
= b= Partl (lassz EE Class2
lass3 i ke -Class3: Class3
Partz P HParkz
Classz i Class3
- E-E Packagel
b (3 -Class] ; Class]
CompaositeStructureliagram
Diagram View

EA (Before Conversion) MD {After Conversion)

Chazzi
Clasu®

Pari
et 1

Chaszd
Classi:Fad :
Class? Claws Pt
Fa

=3

Figure 84 -- Part that Sets Type to Other Elements has Nested Element Inside Itself
6.6.2.5 Port
In MagicDraw, a Property element that can have a Port is the Property that sets type to a Class, Com-

ponent, or Node, and other elements cannot have a Port, whereas in EA, most of the elements can
have a Port.

If a Port is created with an element that is not a Class, Component or Node, the Port will be removed
from the diagram view, however, its data will be preserved.

Contanment tree
EA (Before Conwversion)

MD (After Conversion)

B Package1 -f;] Packagel
& CompositestructureDiagram EIE Class1
= Class1 P b +Portl
<1 Parti EIE Packagel
=) =@ winterfaces Interfacel i b -Inkerfacel : Inkerfacel
43 Parkz -0 -Classl ! Classl

P b Composite StruckureDiagranm
B Inteefacel sinberfaces

------ b +Partz

Diagram View

EA (Before Conversion) MD {After Conversion)

Clu==i wintarface s Clas=1
Interace]

Fortl
| o |Parz |:|

Figure 85 -- Only Class, Component, and Node Can Have a Port

winterfaces
Irterfacel

The following transformation message will open:

Removed view <xmi:id>:

Invalid Port. Port can be added to Part that its
type is set to Class,

Component and Node only.

(i) Port whose type is set to other elements

You can set the type of Port element to another element (a Class, Actor, Component, or Usecase) by

right-clicking the Port element and select Advanced > Set Property Type > Select Property Type
(Figure 86).

ﬂ] F EEIE‘:" Prnpel’irT‘rpﬂ
i eea g

Loy
13’- Propertes. .. Alt+Enter t o . Erowize |5=-:|":|'l]
—_Il Achranoed Pl Custom Properbes. ., InM
—
...... % Create Lnked Documeant Cirl+alt+D |) =
3 Set Property Type... - Lﬂ
""" " =1 | =] D
Add . a| D (B
B Multinlidty... i Bchor
Find b @ Uzecaws
..... Transform... Crls Lo R E Clazsl
""" Erbedsed Elements Wl S &l Mode
LRane:

|°'i Lock Element, ..

""" Selectable

...... N o
Appearane 3
Z-Onder L4

Figure 86 -- Setting Port Type

(ii) Port whose type is set to another element and containing Expose Interfaces

If an Expose Interface is created on a Port and the Port type is set to another element, the Expose
Interface data will be relocated to the Port's type element. For example, if the Port1 type is set to
Actor, after conversion, an Interface Realization (the Expose Interface data) will be placed inside the
Actor.

98 Copyright © 1998-2011 No Magic, Inc.

Containment tree
EA (Before Conversion)
= Sl

packl
5?_ Ackor
- [Classi
- E Portl Actor
=@ ProvidedInterfacel

Diagram Yiew

EA (Before Conversion)

Claz=1

Provi dedintarface
Fartd

MD (After Conversion)

E-E packt
B Classt
i =B 4Portl : packl: Ackor
b (T Providedinterface!

jE packl

i @ Class] : packiClassi
B £ Achor
EF =¥ Relations
L o Tnberface Reslization[nack] Ackor = pack? Class]

MD (After Conversion)

Provddedntartacal

Class] .
POt

Figure 87 -- Port that Sets Type to Other Element Contains Expose Interface

6.6.2.6 Collaboration

The Collaboration element data and its nested data will be normally copied, however, if the Collabora-
tion element is drawn in a Composite Structure diagram, a Collaboration use element will be created
to represent the Collaboration element. The Collaboration use element will be named after the Collab-

oration element.

Contanment tree
EA (Before Conversion)
\H| Packagel

ﬁ CompositeStructurebiagram
i Collabaration 1

Diagram Yiew
EA (Before Conversion)

4 ~

MD (After Conversion)
] Packagel Collaboration use element

: that represents a
BE kagel Collaboration element.

I CDmstiteStruct"mm*_f?fL“f’—"
» Collaborationl

L Collaborationl

MD (After Conversion)

‘Collaboration1 -

Figure 88 -- Collaboration Use

Collaboration containing other elements

A Collaboration can contain only Property, Activity, State Machine, and Interaction. Elements other
than these will be removed. If any element is drawn inside the Collaboration, it will be removed from
the diagram view (Figure 89).

Contanment tree

EA (Before Conversion)
B Packagel

MD (After Conversion)

£ Packagel
ﬁ ComnpasiteSruckurebiagram EE Packagel
2 3§+ Colaboraticnl ¢ L) compositestructreDiagran
. [s] Partl i i Zollaborationl
= @ StateMachine El--tii_iﬂ- Collaboratior 1
[=5) StateMachne B[54 StateMachine
----- StakeMachine
- {3 +Partl
- {7 -StateMzchine @ SateMachine
Diagram View

EA (Before Conversion)

MD (After Conversion)

- oy . . i - -
- Collabaration S . Caolshoration
a L P
b N,
3 L F, o
i %
1 EéareMashine i |
1 I
1 Part i j
1 1
i
"'\ ! \ F
r. ;
A r -"
by L4
. - : -
T - .~ a -

Figure 89 -- Collaboration Containing Other Elements

The following transformation messages will open:

® Removed element <xmi:id>: Invalid Element.

Collaboration can
Activity,

State Machine and Interaction only

Invalid Element view.
cannot be contained in any element view.

contain Property,

® Removed view <xmi:id>: Collaboration

6.6.2.7 Expose Interface

Expose Interfaces are the Provided and Required interfaces in MagicDraw.

In MagicDraw, you can draw a Provided Interface or Required Interface in a Port only and set the type
of the Port to another element (an Actor, Usecase, or Class). You can create that particular Port on a
Part element whose type is set to a Class, Component, or Node only.

(i) Expose Interface with Port
If you draw an Expose Interface in a Port and the Port does not assign a type to any elements, that
particular Port will be used to set type to a Dummy Class. The Dummy Class will be created and

named after the Port concatenating with '_type'. The Interface element will be moved to the same
level of the Port.

Contanment tree

EA (Before Conversion) MD (After Conversion) Interface element
will be moved to the
=~ (B Fackace! ' . T D Packagel same level of Port.
ﬁ ConpositeStructurebiagram | E-E Oasst
2 B Oasst i i =Jp +Portl : DummyCla 51: Port1_type
= -1 Partl 0 Providedlnterfacel DUy Class
=& ProvidedInterfacel i |"";; Forkl_fype p—"" ¥
; El-<% Relations
i o Interface Redization[DummyClass:: Classl::
i EB-EH Packaget
b @ <Classl | DummyClass: :Class]

ZampositestructureDiagran
Diagram Yiew
EA (Before Conversion) MD (After Conversion)

_— _— . Providedirtarface
- o : ' Class1 *
Portd

“1Pr-:-\.rinledlnterfaﬁ1

Figure 90 -- Expose Interface with Port

Class1

If an Expose Interface is created on a Port and the type of the Port is set to another element, the
Expose Interface data will be relocated to the Port's type element (see (ii) Port whose type is set to
another element and containing Expose Interfaces for more information).

In MagicDraw, there are some elements that can be used as a Port type. The element can have either
a Provided Interface or Required Interface, or both.

The following is a list of the Port's type elements with specific conditions:

Interfaces can only have a Provided Interface.

Artifacts cannot have a Provided Interface.

Information Items cannot have a Provided Interface.

Signals cannot have a Provided Interface.

Components always have both Provided and Required Interfaces.
The other elements can have both Provided and Required Interfaces.

After conversion, if the type of a Port is set to an Interface and the Port has an
Expose Interface, only the Provided Interface will be shown and the Interface
Realization data will be removed.

Artifacts, Information Items, and Signals cannot hold Interface Realization. If the type
of a Port is set to one of them, the Provided Interface will be removed. However, this
does not affect the Required Interface.

If the type of a Port is set to a Component and the Port has an Expose Interface, it will
always show both the Provided and Required Interfaces.

Diagram View
EA (Beftore Conversion) MD (After Conversion)

Set Port type to Interface

Intgrfmoed*)
O Port can have Provided
Chazed -

Interface only.
Forti ""IFFJ

| Providedntenacal

- Powidedinte s ee1
© . aminteraces :
. Portl .

Frowidadintaracal Clazs1 ' Port cannot have

Port f’f} Provided Interface.

: leill-:dl:rlt:-rflu-'z
Porti
Prosdidedinter tacs 2

Set Port type to Component

Privadedirterface]
ProvidedInterfaced T O Port always have

Classi . both Provided and
Port1
= f’f Required Interface.

Frovidedinterface]

Figure 91 -- Port’s Type Element with Specific Conditions

The following transformation message will open:

Updated element <xmi:id>: Provided Interface conflicts with Port type. The
Port type is updated to an owner of Interface Realization.

If an Expose Interface is created with an element that is not a Port, the element will be removed both
from the Containment tree and diagram view (Figure 92).

Contanment tree

EA (Before Conversion) MD (After Conversion)
= |E] Packagel ED Packagel Expose Interface
ﬁ CompositeSruckurebiagram | I E Class1 4 element will be removed.
= & dasst | B Packaget
2 ProvidedInterfacel - O -Class] ;| Class:: Class]
 OTmEm
Diagram View
EA (Before Conversion) MD (After Conversion)
Class1 Class1

Providedinterface

Figure 92 -- Expose Interface with Element that is not Port

The following transformation message will open:

Removed element <xmi:id>: Invalid Element. Expose Interface can be added to
Port only.

(ii) Expose Interface with relationship
In MagicDraw, the Provided and Required Interfaces cannot be connected with any relationship as is

shown in Figure 93. If there is any relationship connecting to the Expose Interface, it will be removed
both from the Containment tree and diagram view.

Diagram Yiew
EA (Before Conversion) MD (After Conwversion)

Frovidednieface]

Classd : Clssd Class / : Ga=s2
D : @ aoa : IPCII‘H . Pari2
p o idednieface? “prpdedinenazd | i ’/]
: o Pl ; :

Frowidedierface?

Hassd Classt Chss3

Clnzad

=calegain=

Proudedinfaiaa: Proaidecirderfazed

Figure 93 -- Expose Interface with Lines

The following transformation message will open:

Removed element <xmi:id>: Invalid Element. Expose Interface cannot be con-
nected with the element.

6.6.2.8 Package

In MagicDraw, a Package cannot be drawn in a Composite Structure diagram. If it is drawn in EA, it
will be removed from the diagram once it has been converted to MagicDraw.

Contanment tree

EA (Before Conversion)

2| Packagel
ﬁ ComposikeStructurebiagram
__| Packagez

Diagram View
EA (Before Conversion)

| Packagez

6.6.2.9 Assembly

MD (After Conversion)

-7 Packagel

----- 7 Packagez

E-E Packagei
Lo B CompositeStruckureDisgranm

MD (After Conversion)

Package viwe will be removed from
_Eun'pusite Structure diagram

e

Figure 94 -- Package

In MagicDraw, there is no Assembly line. It will be updated to a Connector.

Diagram Yiew

EA (Before Conversion)

MD (After Conversion)

assembhy -
Part1 :

Fart2

Part1 SSFEMHNY Part2

Figure 95 -- Updating the Assembly Line to the Connector Line

The following transformation message will open:

Updated element <xmi:id>: Assembly updated to Connector.

6.6.2.10 Dependency

There are many relationships that EA exporter exports to Dependency as the following elements:
e Delegate
e Role Binding
e Represents
e Occurrence
e Nest
e Derive
e Import
e |nstantiate
e Usage
e Realize
e Trace

The above relationships will be shown in the diagram view as Dependencies with stereotype.
6.6.2.11 Removed Relationships
If an Association, Direct Association, Aggregation, Composition, Generalization, or Specialization is

created in a Composite Structure diagram, it will be removed from the diagram view, but, its data will
be preserved (Figure 96).

DiagramView

EA (Before Conversion) MD (After Conversion)
Clas=s . . Classl -
Asracsriamnl 0 Clemsl . . : Clazel
Class? [S oDLIliLLoiTi Classd ; Clrazd Clazad
Dire ot Axxncistion
—
Classt Clas=E Classs Clazzh
Aggregation |
ClassT fup— Clams? . Clazsi
© | Compasian
-
Classg Clas=10 Claw=d : : Casz10
Feneralization
]]
Class11 m Class1z a3zl : Clagz12
L Specalization

Figure 96 -- Removing Lines
The following transformation messages will open:

® Removed view <xmi:id>: Association cannot be shown in Composite
Structure diagram.

® Removed view <xmi:id>: Direct Association cannot be shown in
Composite Structure diagram.

® Removed view <xmi:id>: Aggregation cannot be shown in Composite
Structure diagram.

® Removed view <xmi:id>: Composition cannot be shown in Composite
Structure diagram.

Removed view <xmi:id>: Generalization cannot be shown in Composite
Structure diagram.

6.6.3 Transformation Report

A report containing the conflicts solved during transformation and other transformation information
such as special mapping and removal of some irrelevant data, are required to be provided to the

users.

The following is a list of the transformation messages:

Removed view <xmi:id>: Invalid Port. Port can be added to Part
that set type to Class, Component, and Node only.

Removed element <xmi:id>: Invalid Element. Collaboration can
contain Property, Activity, State Machine, and Interaction
only.

Removed view <xmi:id>: Collaboration cannot be contained in any
element view.

Removed view <xmi:id>: UseCase cannot be contained in any
element view.

Removed element <xmi:id>: Invalid Element. Expose Interface can
be added to Port only.

Removed element <xmi:id>: Invalid Element. Expose Interface
cannot be connected with the element.

Updated element <xmi:id>: Assembly updated to Connector.

Updated element <xmi:id>: Provided Interface conflicts with
Port type. The Port type is updated to an owner of Interface
Realization.

Removed view <xmi:id>: Association cannot be shown in Composite
Structure diagram.

Removed view <xmi:id>: Direct Association cannot be shown in
Composite Structure diagram.

Removed view <xmi:id>: Aggregation cannot be shown in Composite
Structure diagram.

Removed view <xmi:id>: Composition cannot be shown in Composite
Structure diagram.

® Removed view <xmi:id>: Generalization cannot be shown in Composite
Structure diagram.

6.7 Interaction Overview Diagrams

The following sections will describe some additional EA specific Interaction Overview diagram infor-
mation.

6.7.1 Conversion Details

6.7.1.1 Interaction Overview Diagram

An Interaction Overview diagram is one of the four types of Interaction diagrams (the other three are
Timing, Sequence, and Communication diagrams).

An Interaction Overview diagram, just like an Activity diagram, visualize a sequence of activities.
Most of the notation elements for Interaction Overview diagrams are the same as those for Activity
diagrams such as initial, decision, fork, join, and final nodes. Two new elements in the interaction
overview diagrams are Interaction Occurrences and Interaction elements.

EA (Before Conversion)

ST itk al
rat o |
-
=
-
=il
= malim o
O bjactt i Objm o o =
ko
T [T
1 i I
| ¥ 1
- !
!
i
L
e
. | S
7T ret

i - | = =0iz

| ' i
O
Flivi bgFim al

Figure 97 -- Interaction Overview Diagram

After conversion, the Interaction Overview diagram will be placed within an Activity element (Fig-
ure 98).

EA (Before Conversion) MD (After Conversion)

£ Packags

| Packa T
A ‘*‘E - El-4y EA_Ackiviy
‘?_ﬂlflasstllagra'n Dol — —— b
e s [l interactionCver viewDisgram
Ea Inter'a:l:l-:ﬂ..".-rnzlr'-'lsv.'u[.lla-;narn 01 «= EA_Cobaboration]
= &qmcnﬂlmram . EH% EA_Irteraction
@ Initighede i L SequenceDiagram®

i—--ﬂ.‘ ClassDisgram

Figure 98 -- Interaction Overview Diagram Placement

112 Copyright © 1998-2011 No Magic, Inc.

6.7.1.2 Interaction Element

Interaction elements are elements that display an inline Interaction diagram (Interaction Overview,
Timing, Sequence, or Communication diagram).

In EA, Interaction elements can be created to display other diagrams rather than those classified as
Interaction diagrams (Figure 99).

EA (Before Conversion) r
=d Commlia
1z =call=) — Bljackd
=d Sealis

Slejurt % %
Fate 0 Ao

|

Figure 99 -- Interaction Element

Interaction elements will not be imported to MagicDraw.

EA (Before Conversion) MD (After Conversion)

Aclivi
yintia

- Activitplnitial o oo o - o o o o o

. o
o Np o [sdnterstiont /0

=t N e o ref

: | | Objectd %

CActord o

SRR R R]
= e)

-
© o AckivitgFinal - o e .J\C’I\"l
LT L wFina

Figure 100 -- Interaction Element in Interaction Overview Diagram

6.7.1.3 Interaction Occurrence
Interaction Occurrence elements are references to an existing Interaction diagram. They are visually
represented by a rectangular frame, which can be created by dragging the Interaction diagram from

the project Browser to an Interaction Overview diagram and select the 'Interaction Occurrence' option
from the pop-up dialog.

EA (Before Conversion) MD (After Conversion)

E/ ref

Figure 101 -- Interaction Occurence Element

Table 12 shows the conversion limitations and constraints in EA exported XMl and EA Import Plugin.

Table 12 -- Limitations and Costraints

No. | Constraint name Description

1 N-ary Association Due to the difference between the EA exported XMI and MagicDraw XMI,
the view of N-ary association will not be imported.

2 Diagram Legend MagicDraw does not have a similar element. Diagram legends will not be
imported.

3 Diagram Note The element most similar to Diagram Note is the MagicDraw diagram
information table (Option > Show diagram info). However, it will be
mapped to the Option > show diagram details, in EA. So Diagram Notes
will not be imported to MagicDraw.

4 Text size The size of text displayed in EA and MagicDraw may vary. The text size in
EA is mostly bigger.

5 Word wrap Due to size constraints in text displayed in element blocks, the result of
word wrap in EA and MagicDraw is likely to be different.

6 Contact point The position of both ends of a link element cannot be mapped to
betweenelementand |MagicDraw because the last segments of the link element in MagicDraw
link always point to the center of connected elements.

7 Display alternative In EA, you can display an element in a diagram by using an alternative
image image. MagicDraw will not import that particular image. A default shape

will be used instead.

8 Link label position A Link element such as an association has many text labels, for example,
multiplicity and role name labels. MagicDraw will not import the position of
these labels. A default position will be used instead.

9 Pin position A pin position in MagicDraw may have been slightly moved from its origi-
nal position in EA. Especially if the pin is placed at the corner of its contain-
ing element, it will be shifted a little away from the corner (mostly in a
clockwise direction).

No. | Constraint name Description
10 |Nested CallBehavior- |A CallBehaviorAction element nested with another CallBehaviorAction ele-
Action ment. The outermost part of the element will remain, the other will be
removed.
11 DataStoreNode inner |A DataStoreNode element that contains Activity-Diagram-related-ele-
element ments. Every element inside that particular DataStoreNode element will be
removed, only the DataStoreNode element will remain.
12 Object inner element |An Object element that contains Activity-Diagram-related-elements. Every
element inside that particular Object element will be removed, only the
Object element will remain.
13 |Lifeline position A position of Lifeline in MagicDraw will not correspond to the original posi-
tion in EA. The position is fixed.
14 Diagonal Sequence |MagicDraw does not support Diagonal Sequence Messages.
Message
15 Sequence Activation |MagicDraw does not support manipulating Sequence Activation through
Options Sequence Activation Options.
16 State contains dia- If a diagram element placed inside State element. It will be removed.
gram
17 Region in Orthogo- EA exported XMI contains incorrect information when:
nal State - more than one regions have identical name.
* region was created and then removed before exported to XMI.
This will result in an unexpected result after importing it into MagicDraw.
18 |Assembly Relation- |Assembly relationships in EA are exported to XMI as Connectors.Conse-
ship in Composite quently, they will be imported to MagicDraw as Connectors.
Structure diagram
19 Interaction elements | MagicDraw does not import Interaction element displayed as diagram
as diagram frame frame in Interaction Overview diagram.
20 Message timing Duration Observation, and Timing Observation do not be imported to
details MagicDraw.
21 Concurrent State Adding and removing multiple Concurrent State Regions to and from

Regions in
StateMachine

StateMachine in EA can cause the EA XMI to be incorrectly exported. If
the EA exported XMl is in this state, the result of the StateMachine
imported to MagicDraw cannot be determined.

The same problem also occures if there are multiple Concurrent State
Regions with the same name.

No.

Constraint name

Description

22 |Combined Fragment |Adding and removing multiple Interaction Operands to and from Combined
Fragment in EA can cause the EA XMI to be incorrectly exported. The
problem can be fixed by impoting the EA XMI back to a new project in EA
and export it back before importing it to MagicDraw.

23 | Problem occurduring |Importing EA XMI to MagicDraw sometime results in the message saying

conversion of
Sequence diagram.

that “Problem occur during conversion of Sequence diagram”.

If this problem occurs, Please try to import the XMI back to a new project
in EA and export it back again before importing it to MagicDraw.

	Contents
	1. Introduction
	2. Plugin Information
	3. Working with Enterprise Architect Import Plugin
	3.1 Conversion Options
	3.2 Conversion Messages

	4. Transforming EA Specific Data
	4.1 Constraints
	4.2 Requirements
	4.3 Scenarios
	4.4 Files
	4.5 Requirements (External)
	4.6 Changes
	4.7 Issues

	5. Importing Diagrams
	5.1 Geometry Properties
	5.2 Color Properties
	5.3 Display Properties

	6. Special Transformation
	6.1 Use Case Diagram Elements
	6.1.1 Actor with Properties
	6.1.2 Use Case with Invalid Inner Elements
	6.1.3 Boundary

	6.2 Activity Diagram Elements
	6.2.1 Activity
	6.2.2 Activity Diagram
	6.2.3 Object as the Inner Element of an Activity
	6.2.4 Synch Node
	6.2.5 Activity Parameter
	6.2.6 Exception Handler
	6.2.7 ObjectFlow
	6.2.8 ExpansionRegion
	6.2.9 InterruptibleActivityRegion
	6.2.10 Swimlane
	6.2.11 StructuredActivity
	6.2.12 InterruptFlow
	6.2.13 ExpansionNode

	6.3 Sequence Diagram Elements
	6.3.1 Lifelines
	6.3.2 Gate
	6.3.3 Endpoints
	6.3.4 Delete Messages
	6.3.5 Branch Messages
	6.3.6 Boundaries, Controls, and Entities
	6.3.7 Actors
	6.3.8 General Ordering
	6.3.9 State Invariant
	6.3.10 Continuation
	6.3.11 Diagonal Message
	6.3.12 Synchronous Message Behavior
	6.3.13 Asynchronous Message Behavior
	6.3.14 Return Message Behavior
	6.3.15 Activation Options

	6.4 Communication Diagram Elements
	6.4.1 Object, Boundary, Entity, and Control
	6.4.2 Exception Elements
	6.4.3 Realization and Nesting
	6.4.4 Association
	6.4.5 Message
	6.4.6 Operations

	6.5 State Machine Diagram Elements
	6.5.1 StateMachine
	6.5.2 State
	6.5.3 StateMachine Placed on a Diagram
	6.5.4 Object
	6.5.5 Synch
	6.5.6 EntryPoint / ExitPoint
	6.5.7 Object Flow Connecting State Machine Elements
	6.5.8 Information Flow Connecting State Machine Elements
	6.5.9 Trigger
	6.5.10 Self Transition
	6.5.11 Removed Element

	6.6 Composite Structure Diagrams
	6.6.1 Import Elements
	6.6.2 Conversion Details
	6.6.3 Transformation Report

	6.7 Interaction Overview Diagrams
	6.7.1 Conversion Details

	7. Known Limitations and Constraints

