Best Practices for Applying UML, Part |

Darius Silingas, Ph.D.
Principal Trainer for MagicDraw UML

B megieeirauw”

Architecture Made Simple

Content

Software Development and Modeling With UML ... 3
BESE PracCliCesttt e e e e e eeaae 4
Best Practice #1: Apply a subset of UML relevant to YOUr 10lccooiiiiiiiiiie e 5
Best Practice #2: Focus on the Most Valuable Modeling Artifactscccuvvviviiiii i 6
Best Practice #3: Model in Multiple ADSIraction LEVEIScccuuiiiiiiie it 12
Best Practice #4: Choose Appropriate Level of Detail...............ccc 15
Best Practice #5: Model With StYIe ... e e e e e e e e e e e e e e e e aeeeas 18
ADOUL e @ULNOT et e e e e e e e e eeaans 20
SEIVICES CONLACES ...ttt e et e e e e e e e e e e e e e e e e e e nnnneeees 20

© No Magic, Inc. 2

Although UML notation is widely recognized as lingua franca for software development, many developers still lack
skills for applying it efficiently. Methodologists, practitioners and tool vendors need to share their experience in order to
find out ways how to get the most use from modeling and avoid abusing it. With this whitepaper, we start a series of best
practices in applying UML that are driven from No Magic expertise in multiple software development projects and building
MagicDraw UML tool. We hope that they will help you to change the way you model and make it more efficient!

Software Development and Modeling with UML

Modeling is the core of modern software development. Like every larger engineering task, software

development needs a plan. Models serve us as a plan and allow achieving multiple goals:

= Provide structure for problem solving;
Experiment to explore multiple solutions;
Furnish abstractions to manage complexity;
Reduce time-to-market for business problem solutions;
Decrease development costs;
Manage the risk of mistakes.

Only when developing very small systems, we may start from scratch and bypass modeling.

You DON’T need modeling You DO need modeling

Small one-person projects that do not need to be Large projects that involve large teams, are developed iteratively,
maintained and will not be transferred to and need to be maintained cannot be successful without models.
somebody else might not require modeling.

In large projects modeling speeds up implementation while elevating quality and user satisfaction. We model in all
software development activities starting from business analysis and requirements definition to testing of the constructed
software system.

Context diagram Requirements Business Model: Domain analysis model
Requirements trees Business Process Workflow diagrams

Use case scenarios Analysis & Design Information structure and flows
Visual concept dictionary Test case definitions

Code generation from UML
Visualization of code structure

Implementation architecture
Package structure

Model transformations System Interaction scenarios
Code model analysis Implementation: Architecture Model: Detailed data models
Test case action flows Development & Test System Analysis & Design User interface “maps”

Test case design

Table 1- Applicability of UML Modeling Skills

Software systems are constantly growing in size and complexity, and without efficient modeling skills you cannot be
successful. A Software Development Magazine Salary Survey in 2005 has revealed that the most important skills needed
to produce quality projects and products are architecture modeling and design, which ranked higher than programming,
QA, testing, and requirements management.

Recently, we witness intense battles in the field of the software development process. While almost all approaches
have gone from the old waterfall approach to iterative development, they argue a lot about formality, roles, activities and
artifacts, tools, and which workflows should be emphasized.

© No Magic, Inc. 3

Heavyweight processes i
— RUP, ITIL, CMMI P
Emphasize the first two workflows -

-
-
-
___,..-F
-
-
Ko
5 L 3
Requirements N Programmi
Pl PR Posriming

-

-
-

- Testing

Lightweight processes
- — Agile, XP, Scrum, Lean, ...
Emphasize the last two workflows

Figure 1 — Emphasis on Workflows by Different Softwate Development Processes

Since modeling is the core of development and UML is the de facto standard as the modeling notation, all of those
processes make use of UML. However, the way they use it differs quite a lot. RUP advocates a UML centric approach to
software design, which requires UML modeling tools. Agile methods — XP, Scrum, Lean — advocate informal modeling and
using whiteboards, paper, and simple text or drawing editors as a compliment to UML tools. While we are in none of these
camps, we strongly believe that using modeling tool can help you a lot.

Here is just a short list of helpful UML tool features:

Create and maintain a repository of model data;

Reuse model elements in multiple diagrams;

Create nice diagrams using automated layout functions;
Apply built in design patterns;

Use automated model transformations;

Generate documentation from your model;

Analyze your model using automated tools;

Enable teamwork within one modeling project.

We believe these features are truly beneficial in all software development processes if you take a proactive approach
to modeling. In the next section, we present 5 best practices for modeling with UML.

Best Practices

Experience is the worst teacher — it always gives the test first and the instructions afterward.

Let's get some instructions before you apply UML in your projects — you can count on our experience, which
resulted in the best practices presented below.

© No Magic, Inc. 4

Best Practice #1: Apply a subset of UML relevant to your role

80%—20% rule: 80% of the users apply only 20% of the features.

UML 2.0 defines 13 diagram types and each of them uses a bunch of UML elements. You can find many people
arguing that UML has grown too large and too complex. Well, it definitely evolved and contains more modeling elements if
compared to its original version. However, it is important to recognize that you don’t in most cases need the full
capabilities of UML. The famous 80%—-20% rule holds here as well — 80% of modelers will be fine with 20% of UML.
Which 20% is yours is dictated by your role and that role’s need for specific UML modeling skills.

Table 2 — Applicability of UML Modeling Skills

Business Analysts Software Architects

Capture business processes in diagrams Relate different architectural views

Model organizational structures Transition from business to system models

Perform analysis of domain concepts Define top-level components and package structures
Prepare use case-driven requirements model Manage modeling teamwork

Prepare detailed class models

Model interactions for use cases

Introspect existing systems by reversing and visualizing code
Design OO, relational, and XML data

Transform class structures to database or XML schemas

Analyze workflows for use cases

Prepare action flows for test cases

Model test data

Model interactions for unit and system testing

Business analysts will mostly apply use case and activity diagrams for capturing processes and requirements, also
very simple class diagrams for domain analysis and state diagrams for defining lifecycle of important business objects.
They will need extensions of UML for modeling enterprise architecture concepts like organizational structure or business
goals.

Software architects will apply all UML diagrams, but they would not go into implementation details. Architects need to
capture overall system structure in high level concepts. In most cases, they will be fine with package, component, and
deployment diagrams; and will model only the most important classes and interactions. When building classical layered
systems, they might use the robustness diagram — a simple extension of the UML class diagram — for identifying major
components in interfaces, business logic, and data layers.

Developers will not model all parts of the system, but they would go into low level implementation details on the most
important system parts, e.g. data structures. They use detailed class and interaction diagrams. Most probably, they will
also need UML extensions for capturing technology specific details like relational database structures or XML schema
elements.

Quality assurance engineers need to analyze UML diagrams prepared by business and system analysts, and base
their test cases on use case workflows. They will need object diagrams for modeling test data and activity diagrams for
modeling test action flows and rules. For those who do more technical testing like unit testing (though in the most of
recent approaches it is done by programmers), stress or load testing might need to model interactions using either
sequence or activity diagrams.

The lesson learned

You don't need to know and use the complete UML specification. Learn and apply only the subset that is relevant to
your role!.

© No Magic, Inc. 5

Best Practice #2: Focus on the Most Valuable Modeling Artifacts

The cynic knows the price of everything and the value of nothing. [Oscar Wilde]

The second best practice supplements the first one. Knowing what gives value to your role, you also need to know
what modeling artifacts have long-term value and need to be maintained. The others might be used for instant needs and
thrown away later. Understanding this is really important, since trying to keep too many irrelevant modeling artifacts
synchronized with actual source code quickly becomes a pain in the ... archive. We believe this synchronization
headache makes many people think they don’'t need modeling tools and are fine with whiteboards. But they soon get lost
in whiteboard discontinuities.

However, analysis model artifacts are of high value and should be consistently modeled and maintained, including
analysis artifacts such as:

= Domain entity relationship (ER) class diagrams;
Use case models;
= Activity diagrams for use case scenarios.

Business analysts perform domain analysis by modeling domain entities and their relationships using simplified class

diagrams. These diagrams serve as a visual vocabulary of concepts. They are also a starting point for the design level
data model.

MagicDraw tips

MagicDraw UML tool can even generate a dictionary from class descriptions in HTML format if you
provide concise descriptions for modeled concepts.

Reader Penalty
1 0..1
makes Y given for overdudf
0..* 1
Reservation | <is given for Loan «ginactivates Return
1 0.1 1 0..1
0.4
books Y is child of e
1 0.."
Item classified byp» Category
0.” 1.* 0.1

Figure 2 — Domain ER diagram for library management system

The most popular way to analyze functional requirements is the use case method. It starts by identifying user roles —
actors — and associating them to their interactions with system — use cases. Many business analysts even start with Use
Cases as the best way to capture and document user requirements.

© No Magic, Inc. 6

MagicDraw tips
With tools such as MagicDraw, you can even document use case properties like pre- and post-conditions,

assumptions, interaction scenarios, and generate a formal, presentable use case document from your
model, that can be reviewed by and shared with the business stakeholders.

Abstract use case implementation logic is either defined in text or, for more complex cases, by creating activity
diagrams visualizing activity flows for primary and secondary use case scenarios.

MagicDraw tips
As an example, with MagicDraw you can hyperlink use cases to the activity diagrams modeling their
scenarios and assign activity diagrams as use case primary and secondary scenarios, which enables

including them in generated use case documents. You can decompose activity diagram elements using
hyperlinks to detailed diagrams.

Make item’'s reservation ™~
<<include>> :

[Identify reader
Review reader's history

Reader

loaned items]

[Show list of

<<include>>:

[Select returned itemsj

< [overdue] l Penalize for overdueJ
[on time]
<<extend>x._

(overdue) .. Record return datal

Register items’ loan Penalize for overdue [é)

Figure 3 — Use case model artifacts: use case diagram and activity diagram presenting scenarios for a particular use case Register items return

Register items' return

extension points
overdue

Librarian

Technical design model artifacts may be roughly divided into three value-based groups:

High value ($$$) — should be modeled and maintained using UML tools;
Medium value ($$) — may be maintained or not;
= [ow value ($) — should be used for communication and thrown away.

$$$ — High value design models

B Top level structural decomposition of software and hardware environments
- UML package, component, robustness and deployment diagrams
B Top level package dependency diagrams
- UML package diagram
B Data model
- UML class diagrams in multiple level of abstraction and details
B |nterfaces for system layers / components / subsystems
- UML class and component diagrams
B Dynamic models for interactions implementing main usage scenarios
- UML activity and sequence diagrams (details, e.g. parameter values, are often left out)

© No Magic, Inc. 7

System architects need to bridge the gap between analysis and design. If they are designing layered systems, they
may apply robustness analysis, which is based on a simple extension of the class diagram. It makes use of only four
elements — actors, boundaries (user or system interfaces), controls (business logic), and entities (data). While entities are
more or less identified by the domain ER analysis, the challenge is to analyze actors and use cases, find the system
boundaries, and connect them to data entities through controls.

Seeing the forest before going inside it.

LoginDialog SystemAccessService / User

NotificationService

O S—_ O

Libraria ReaderProfile LoanServic Loan
Reader: ItemBrowser SearchServic Penalty
Item
ItemSearchForm

Figure 4 — Robustness analysis for identifying major components in a layered architecture

Architects need to provide the top-level decomposition of software system packages. Modeling dependencies are very
important in this case since they set the rules for class responsibilities and interactions and help avoid evil effects like
inappropriate coupling and cyclic dependencies. The tools for showing decomposition including dependencies are the
package diagram and the component diagram.

Divide and rule! - a strategy used by ancient Roman empire.

1
magiclibrary
(com.nomagic)
1 1
gui web
services domain
T
1
persistence

Figure 5 — Package dependency diagram

© No Magic, Inc.

While the package diagram allows a logical grouping of implementation classes, the component diagram shows
system level functional elements. Usually, package and component diagrams leave out utility or library packages.
Although packages should be component driven, one package may include multiple components and vice versa. For
example, a component might span several packages depending on its size. Component diagrams may also focus on the
provided and required components, and on connecting the components together.

It is also important to show how implemented software will be deployed in the hardware and software environment.
For this purpose, architects apply deployment diagrams. In UML 1.x, deployment diagrams allowed nesting components
on deployment nodes. In UML 2.0, this has been changed, and instead of components, you need to use artifacts that are
a physical manifestation of software components. It is a rather common practice to create technology specific UML
extension profiles. Profiles enable one to indicate a ‘type’ of an artifact, e.g. <<EJB-JAR>>, and preferably to assign an
intuitive icon, which can replace the standard rectangle shape, e.g. a <<database>> icon.

Web Client J2EE Application Server
HTTP
<<executable>> <<artifact>>
Internet Borwser JSP pages

<<EJB-JAR>>
EJBServices.jar

Local Client Database Server
TCP/IP JDBC
<<JAR>> <<EJB-JAR>> 0 -
AdminGULl jar EJBEntities.jar g
<<database>>
MagicLibrary.mdb

Figure 6 — Top level deployment diagram

Once architects have decomposed the system into packages, components, and deployment artifacts following the
layered architecture principle, the next important thing is to specify the contracts between layers. The most important
piece here is the method specifications for business logic services, and also for data persistence services if they are not
reused. The first step can be done using class diagrams.

service
(com.nomagic.magiclibrary)

SearchService O ServiceFactory

+findUsers(query : String) : List +getSearchService() : SearchService

+findltems(query : String) : List +getReservationService() : ReservationService
+findltems(query : String, cateory : Category) : List +getAdministrationService() : AdministrationService
+getReqistrationService() : RegistrationService

<<implement>>

ReservationService O

+makeltemReservation(customer : Customer, item : Item) : L§a<n<|mlement>‘
+canceltemReservation(reservation : Loan) : void p §

<<create>>
RegistrationService O

+registerLoaned(loan : Loan) : Loan : R
+registerReturned(loan : Loan) : Loan <<implement>>

AdministrationService O
+addCustomer(customer : Customer) : Customer rmi
+updateCustomer(customer : Customer) : Customer = RMISearchService
+removeCustomer(customer : Customer) : boolean - = RMIReservationService
+addltem(item : Item, categories : List) : Item <<implement>> O RMIRegistrationService
*updateltem(ltem : ltem) : ltem = RMIAdministrationService
+removeltem(item : Item) : Item

Figure 7 — Interface specifications for business logic layer components

© No Magic, Inc. 9

However, using only static class diagrams is not sufficient — you may miss some responsibilities or decompose them
inappropriately. Therefore you need to model the dynamic behavior for use case scenarios in order to validate and justify
class structures. Applying interaction diagrams — sequence or communication — help in find new methods in existing
classes, and in finding new classes for specific responsibilities. Interaction driven modeling is actually a very efficient
method, and is the modeling counterpart for test driven programming.

MagicDraw Tips

MagicDraw allows creating new classifiers and adding new methods to existing ones when modeling
interactions. You can also easily drag and drop classes to create typed lifelines.

| : Reader % | <<boundary>> <<control>> % <<entity>> <<control>>
: ReaderProfile : LoanService : Loan : NotificationService

ref
login

1: select reservations for canceling

2:cancelReservations(-)

loop

[for earch ¢ancelled reservation] 4:inactivate()

5: getWaitingUser(-)'“

3:cancelReservation(-)

6: notifyUser(-, -)

7:true

Figure 8 — Interaction diagram for implementing specific use case scenario

$$ — Medium value design models

® Structure of Ul classes
- UML class diagram, might be extended for specific technology
= Ul screen transition schema
- UML state or class diagram
= Reusable implementation solutions
- UML class, object, sequence diagrams
= |ogic of important algorithms
- UML activity or sequence diagrams

© No Magic, Inc. 10

During technical design activities, if you go up the layers of the software system, the stability decreases. Detailed
models for user interface layers are volatile during design phase — they change a lot, and throwaway prototyping is an
approach used. Whether this method is used or not, is it still valuable to model high-level structures of user interface

elements without going into details.

{{::)} <<redirect>>
<<server page>> <<client page>>
FirstLoad IncorrectLogin
<<build>>

<<builds>>

i g
] B | —
— =]
<<submit>>
{parameters = LoginID, Passwordf<Server page>>
Login

<<client page>> <<form>>
UserLogin LoginForm
<<build>>
<<client page>>
MemberPage

Figure 9 — Structure of Web Ul Classes

It is rather difficult to get precise requirements for the system without prototyping its user interface and sketching its
navigation schemas. Thus, drawing and maintaining a navigation schema for a system is also a highly useful part of your

modeling toolkit. You should apply state diagrams for this task.

®

login logout
[results == 1] / show not found message . back
Item Browser
search query) .
back select category / refresh
{__[results == 1]
select ltem
[results > 1]
Item Details | make reservation Reservation List]

[Search List]

Figure 10 — User Interface Dialog Map

If you go deeper into implementation, modeling is also essential, and it can also be accomplished using UML tools.

11

For example, finding the methods for implementation classes can be accomplished using test-driven programming, which
forces you to write unit tests and only then implement the class. Having a model of the tests and test cases helps navigate

© No Magic, Inc.

through the test process. The testing functionality has excellent support in modern IDE tools. However, UML models
illustrating the logic of important algorithms or reusable implementation solutions may also be very helpful for various
purposes — analysis, learning, and documentation.

Detailed implementation level class modelsq

Dependency diagrams for “deep” inner packages and classes
Detailed user interface models

Interaction diagrams that model all details of implementation
Trivial activity or state diagrams

During technical design phase, detailed models change frequently, thus it is better to model, implement, and analyze
them in conjunction with programming IDE tools. Most of the technical models can be reversed and visualized
automatically from source code using code reverse engineering tools.

MagicDraw Tips

MagicDraw UML supports forward and reverse engineering of various types of code: Java, C++, CH#,
relational databases, XML schemas. It also provides multiple model visualization tools that in an
automated way create multiple diagram types such as package dependency, class hierarchy, and Java
sequence diagrams.

The lesson learned

Model artifacts may be difficult to maintain, thus you need to focus on the most valuable ones. Draw and maintain
the $$$ value artifacts using UML tools, make your selection of $$ value artifacts that you find useful in your projects,
and don't use for sketching but don’t worry about maintaining $ value artifacts. Maximize your time and your efforts in
this way.

Best Practice #3: Model in Multiple Abstraction Levels

Abstraction is the process of reducing the information content of a concept, typically in
order to retain only information that is relevant for a particular purpose [Wikipedia]

Abstraction is the thought process wherein ideas are distanced from objects [Wikipedia]

We model to furnish abstractions in order to manage complexities. Usually there are several levels of abstractions that
need to be modeled. The following abstraction levels are usually defined:

= Analysis Model aka Computation Independent Model (CIM);
= Design Model aka Platform Independent Model (PIM);
= /mplementation Model aka Platform Specific Model (PSM).

In your UML modeling tool, you should structure your model so that these abstraction levels were clearly separated,
easily maintained, and backtracked. Let us show an example of traveling through these three abstraction levels.

The conceptual library management system ER diagram is an example of the Analysis Model (CIM). It shows the
concepts that exist in the library system independently of whether it is managed manually of with software system. The
links show logical relationships, and we do not model attributes. Even if attributes were modeled, their data types would
not be assigned.

© No Magic, Inc. 12

Reader Penalty

1 0.1
makes Y given for overdudy
0..* 1
Reservation | is given for Loan <ginactivates Return
1 0.1 1 0..1
0..%
books Y is child ofp»
1 0..%
Item classified byp» Category
0..* 1.* 0.1

Figure 11 — Analysis model of library concepts (CIM)

When designing the software system, we need to derive a detailed data model. It has to be conformant with the
analysis model, but some restructuring may be applied based on design decisions. For example, the diagram below
illustrates a design model derived from the previous analysis model by making the following changes:

= Attributes with UML data types were specified for each class;
= Concepts of Reservation, Loan, and Return were merged into one class Loan;
= Two specific subclasses of /tem — Book and AudioRecord — were added.

This model already defines the complete data structure, but is not technology specific — it's pure object oriented
structure with UML data types, thus not specific to any particular programming language like Java or data storage
technology, relational database, or XML.

Reader Penalty
-firstName : String -reader suspendedUntil : date
-lastName : String 1
-email : String

1 | -loaner

1 | -overduelLoan

Loan -book Item 0..* -categorie Category -childs
*
-dateReserved : date 1 -title : String 1..* |-name : String 0.
-dateLoaned : date = nul -description : String -description : String
-dateReturned : date = null -price : float -parent
0.1

i

Book AudioRecord
-ISBN : String -artist : String
-numberOfPages : int -label : String
-edition : int -released : date
-published : date

Figure 12 — Design model of a library data structure (PIM)

The next step is to derive the platform specific model, which contains technology specific details and has enough
precision for generating executable code. For this kind of modeling, you need profiles with extensions to the UML

© No Magic, Inc. 13

language, which are technology independent. The example below shows a relational database structure, which
corresponds to the design model, with the following changes:

= Classes were assigned stereotypes <<table>>;
= UML data types were changed to SQL data types and multiplicities were identified;
= Primary and foreign key fields were added to classes;
= The associations were assigned stereotype <<FK>> with properties indicated field mapping;
= The many-to-many association was changed into intermediate table;
= The generalization relationships were turned into foreign keys.
<<table>> <<table>> <<table>>
Item Category_ltem <<FK>> Category
<<PK>>-id_ltem : integer = [& 1 -fk_Categoryid_Category : integer <<PK>>-id_Category : integer
-title : varchar [IS— -fk_ltemid_ltem : integer -name : varchar
-description : varchar <<FK>> -description : varchar <<FK>>
-price : float -fk_Categoryid_Category : integer
<<FK>>
<<table>> <<table>>
Loan Reader
<<PK>>-id_Loan : integer <<PK>>-id_Reader : integer
-dateReserved : date -firstName : varchar
-dateLoaned : date = null -lastName : varchar
-dateReturned : date = null <<FK>> -birthday : date
-fk_Readerid_Reader : integer [1] -email : varchar
-fk_Itemid_Item : integer [1]
<<FK>>
<<table>>
Penalty

<<PK>>-id_Penalty : integer
-suspendedUntil : date <<FK>>
-fk_Readerid_Reader : integer [1]
-fk_Loanid_Loan : integer [1]

Figure 13 — Implementation model of library relational database schema (PSM)

Although it is possible to model the PSM manually, it is advised to use automated transformations. However, using
transformations is a topic of another best practice in the upcoming whitepaper.

The lesson learned
You can model at different abstraction levels. However, it is crucial to decide how many abstraction levels you need

for you project — some will be fine with one, but the most will at least require two if not three. Clearly separating
abstraction levels in your model projects facilitate maintaining and backtracking related elements.

© No Magic, Inc. 14

Best Practice #4: Choose Appropriate Level of Detail

Sometimes less is more.

Figure 14 — Diagrams overloaded with details are difficult to read and understand

Level of abstraction dictates the level of detail. However, with UML modeling tools even within one abstraction level
you may choose to show different levels of details. The purpose of what you want to show should drive the choice.
Irrelevant elements that can be guessed implicitly should be left out. A common technique is to show a diagram without
details of elements but showing the most important relationships between them. Then you can have additional diagrams
that focus on the details of specific element.

Let's go through an example of multiple levels of details so that you can decide, which level is the most appropriate for
you.

Step 1

Measurable

O

<<gettgr>>+getLenght() : flogt

Naming convention indicates method purpose, thus stereotype

can be hidden.

MeasurableShape

Trivial conventional methods, e.g. setters and getters, toString(),

+compareTo(obj : Object) : int

-
-
-

.- can be hidden

Polygon

Line

-sta

+Polygon(points : List)
+hasPoints() : int

+getPoint(index : int) : Point
+getLength() : float
+toString() : String

+Line(start : Point, end : Poi
+getStart() : Point
+getEnd() : Point
+getlLength() : float
+toString() : String

nt)

-end

-X :int
-y rint

-points|

{orc?e'i’ed]

+Point(x : int, y :int)
+getX() : int

+getY() : int

+setX(x :int) : void
+setY(y:int): void
+equals(obj : Object) : boolg
+distanceTo(point : Point) :
+toString() : String

Figure 15 — Level of Details, Step 1: all implementation details are shown

© No Magic, Inc.

ar
lo

15

Step 2 Measurable O
+getlLenght() : float
JAN

MeasurableShape

+compareTo(obj : Object) :|int

Line Polygon

+Line(start : Point, end : Point) |+Polygon(points : List)
+getLength() : float +hasPoints() : int
+getPoint(index : int) : Poin
+getlLength() : float

I Associations with roles and

multiplicities can be
converted intro attributes.
Point
-start

-X :int -points
-end_|-y : int 2p*
+Point(x :int, y : int) {ordered}

+distanceTo(point : Point) : float

Figure 16 — Level of detail, step 2: irrelevant elements are removed

Step 3 Measurable O
+getlLenght() : float
JAY
: Associations with roles and
: multiplicities can be
MeasurableShape converted intro attributes.

+compareTo(obj : Object) :|int

Line Polygon

-start : Point -points : Point [2..*{ordered}
-end : Point

+Polygon(points : List)
+Line(start : Point, end : Poipt) [+hasPoints() : int
+getLength() : float +getPoint(index : int) : Poin
+getLength() : float

Figure 17 — Level of detail, step 3: unimportant associations are turned into attributes

© No Magic, Inc.

16

Step 4

Measurable
ZA
MeasurableShape
Line Polygon
-points
-start -end 2..* {ordered}
Point

Figure 18 — Level of details, step 4: only class and interface symbols and relationships between them are shown

As you probably agree, removing irrelevant details allows focusing on the essential design elements, which makes
diagram easier to read and understand.

It is very important to choose appropriate level of details. We can give the following pieces of advise for controlling
level of details in your diagrams:

= Do not model irrelevant details, such as:
Implementation-specific properties;

Private class methods and attributes;
Conventional methods, e.g. foString() in Java;
Utility classes;

Elements that can be generated automatically;
Getter and Setter methods;

= Show only the most important associations.

O O O 0O O

O

Too detailed models are difficult to understand and keep in sync. Therefore they are rarely used. As a result, it is
common to give up their maintenance, thus they become worthless since they do not correspond to the actual design or
code.

The lesson learned

Show only important properties of the model elements in your diagrams. Getting rid of irrelevant details improves
communication and makes maintenance easier.

© No Magic, Inc. 17

Best Practice #5: Model with Style

Style is the way you put together things, not the things themselves.

Software developers follow defined styles for programming, requirements specification, technical documentation, and
user manuals. We also need modeling style as well. Adhering to common modeling style makes diagrams easier to read
and understand and facilitates teamwork in modeling. Modeling styles includes:

Naming conventions;

Layout conventions;

Choosing appropriate diagrams;
Modeling & design principles.

A seminal book published on this topic is “The Elements of UML Modeling Style” by Scott W. Ambler. It gives a bunch
of rules that need to be followed when modeling UML diagrams. We will present only an example of improving modeling
style and identify the functionality of UML modeling tools that facilitate layout of diagrams.

Resolution
-description : char [*]
-type : int
-dateResolved : date Project
-title : char [1..100]
Programmer
-assijinedProject
1 }
Role
Developer -rolesInProjects I~ Tester
-resolvedBy 0.
-name : char [1.]7] -
1 -emai : char [5..1]
ProjectManager
-registeredBy -assignedTo
1
-resolvedDefect Defect
1 -id : long

-title : char [1..7]
-description : char [1./*]
-dateRegistered : daf
-priority : int

[

Figure 19 — A diagram which DOES NOT follow modeling style rules

The following problems are apparent in this diagram:

Different element sizes are used,;
Diagram is not symmetric;

Long, bent, and crossing lines;

Horizontal ungrouped generalization links;
Unevenly distributed space.

© No Magic, Inc. 18

Defect -registeredBy Developer Role Project
- 1 -rolesInProject -assignedProject—
-id : long -name : char [1..7] 0" 1 -title : char [1..100]
-title : char [1..*] -assignedTo|-€mai : char [5..%] -
-description : char [1..7} assigned’q
-dateRegistered : date| 1 T
-priority : int |
1 -resolvedDefect 1 -resolvedBy Programmer ProjectManager Tester
Resolution
-description : char [*]

-type :int
-dateResolved : date

Figure 20 — A diagram, which follows modeling style rules

Some sample modeling style rules:

There are a lot more rules of thumb on modeling class and other diagrams — check Ambler's book or his website at

Do not overload diagrams with irrelevant details
Split large diagrams into multiple smaller diagrams
o Diagram should contain 7+2 elements
Use colors to identify elements of different type
o Color may indicate, which development group is responsible for implementation
Try to maintain symmetry
Model generalizations and realizations vertically
o Child / implementing class should be below parent / interface
Model associations and dependencies horizontally
o Recommended direction — left to right

http://www.agilemodeling.com/style/

For improving diagram layout, you may apply automated layout tools. However, relative positions of elements in most
cases are very important, and most fully automated layout tools do not retain them. We have found out that simple layout

functions applied to a selected area or selected elements in a diagram are most helpful:

Sure, the content is more important than the form. However, sticking to one consistent modeling style makes the
content of your diagrams more readable and understandable. Since modeling is both an interactive and iterative activity,

Make sub trees of generalizations, realizations, association;
Make elements the same width, height;

Distribute space evenly;

Align elements to the top, bottom, left, and right;

Route paths orthogonally;

diagram readability is essential for improving the content!

The lesson learned

rules that you should apply when modeling different UML diagrams.

In Closing

We have discussed five best practices for applying UML in software modeling. That should be enough information to

Modeling with style improves the value of diagrams by increasing their readability. There is a lot of modeling style

digest for this time. But wait for the upcoming whitepapers — we are going to present many more best practices!

© No Magic, Inc.

19

About the Author

Darius Silingas, Ph.D.
Principal Trainer of MagicDraw
darius.silingas@nomagic.com

Darius has been working as professional software developer starting from 1997. He took Java
developer’s role in multiple international projects. Currently, Darius works as an analyst and principal

trainer in MagicDraw UML modeling tool development team. Darius has developed multiple modeling
case studies and run MagicDraw & UML training courses worldwide. He also taught commercial training courses on
Requirements Management with UML, Software Design with UML, and Java/J2EE Programming. Darius received PhD
from Vytautas Magnus University, where he teaches courses Software Development Methodology and Software
Engineering. Additionally, he holds several professional certificates from Microsoft, Sun, and OMG. Darius participates
actively in various events and presents talks on UML and other software development topics. He holds the following

professional certificates:

Microsoft Certified Professional

Sun Certified Programmer for the Java 2 Platform 1.4
OMG-Certified UML Professional Fundamental
OMG-Certified UML Professional Intermediate

Services Contacts

Please contact us at services@nomagic.com for getting more detailed information about No Magic services,
training courses, scheduling possibilities, or if you have any specific needs for your company.

“w Y =)
-~ £y T o~
: 4 ;. -1 =
T I}"'.’)’,# i [/_-
.:'/)F ke I } ‘e
| s iy oo
et “e
.-,#"‘_‘ - d
J A T
Plano, TX ® f}” ol
L. PR
e T

Bangkok,

)/ !~,:| T Thalland

L it

No Magic, Inc. No Magic European Sales Office
Texas UAB “Baltijos programine iranga”
7304 Alma Drive, Suite 600 Savanoriu pr. 363

Plano, TX 75025

Phone: +1 214 291 9100
Fax: +1 214 291 9099
WWW.nomagic.com
www.magicdraw.com

© No Magic, Inc.

LT-49425, Kaunas, Lithuania
Phone: +370 37 324032
Fax: +370 37 320670
http://www.bpi.lt/en

No Magic Asian Development Center
No Magic Asia Ltd.

Rama IX Road, Bangkapi, Huaykwang
Bangkok 10310, Thailand

Phone: +66-2-7170250

Fax: +66-2-7170251
http://www.nomagicasia.com

20

