— A

& megieeirew

Architecture Made Simple

CAMEO SIMULATION
TOOLKIT

version 1.0

user guide

No Magic, Inc.
2011

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 2010-2011 by No Magic, Inc. All Rights
Reserved.

CONTENTS

CAMEO SIMULATION TOOLKIT &

1. Getting Started 5
1.1 Introduction to Cameo Simulation Toolkit 5
1.2 Key Features 5
1.3 Installation 6
2. Model Execution 6
2.1 Simulation by Executing Elements 7
2.1.1 Behaviors 10
2.1.2 Class 14
2.1.3 Diagram 17
2.1.4 Instance Specification 17
2.2 Simulation by Executing the Execution Configuration 18
3. Execution Configuration 20
3.1 ExecutionConfig Stereotype 20
3.2 Execution Log 20
3.3 User Interface Prototyping 21
3.4 Ul Modeling Diagram Execution 22
3.5 Activelmage and ImageSwitcher 25
4. Animation 26
4.1 Active and Visited Elements 26
4.2 Customizing Animation Colors 27
5. Simulation Debugging 28
5.1 Understanding Simulation Sessions 28
5.2 Simulation Debuger 29
5.3 Simulation Console 30
5.3.1 Console Pane 30
5.3.2 Simulation Information 31
5.3.3 Simulation Log File 32
5.4 Runtime Values Monitoring 32
5.4.1 Variables Pane 32
5.4.2 Runtime Object created from InstanceSpecification 33
5.4.3 Exporting Runtime Objects to InstanceSpecification 34
5.5 Breakpoints 36
5.5.1 Adding Breakpoints 37
5.5.2 Removing Breakpoints 38
6. Validation and Verification 40
7. State Machine Simulation 42
7.1 Supported Elements 42
7.2 Adapting Models for State Machine Simulation 43
7.2.1 Defining Trigger on Transition 43
7.2.2 Using Guard on Transition 44
7.2.3 Behaviors on Entry, Exit, and Do Activity of State 45
7.3 Running State Machine Execution 45
7.4 Sample Projects 46
7.4.1 test_regions.mdzip 46
7.4.2 test_timers.mdzip 46
7.4.3 test_guard.mdzip 47
8. Activity Simulation 47
8.1 About Activity Execution Engine 47
8.2 Creating Model for Activity Execution 48
8.3 Executing Activity 71

Copyright © 2010-2011 No Magic, Inc.

CONTENTS

9.1 About Parametics Engine 76

9.2 Adapting Model for Parametric Execution 77
9.2.1 Understanding the Flow of Parametric Execution 77
9.2.2 Typing Value Properties by Boolean, Integer, Real, Complex, or Their Subtypes 78
9.2.3 Using Binding Connectors 79
9.2.4 Creating InstanceSpecification with Initial Values 80
9.2.5 Working with Multiple Values 81

9.3 Running Parametric Simulation 82

9.4 Retrieving Simulated Values 85

9.5 Executing Parametric Simulation from Activity 86

9.6 Sample Projects 87

10.1 Stopwatch Sample 87
10.1.1 Manual Execution 87
10.1.2 Controlling Execution with Activity Diagram 88

11.1 Math Console 88
11.2 Exchanging Values between Cameo Simulation Toolkit and Mathematical Engine 90
11.2.1 Exchanging values between Slot and Mathematic Environment 90
11.2.2 Export Runtime Value to Mathematical Engine 92
11.3 Built-in Math Solver 92
11.3.1 Using Built-in Math Solver in Math Console 92
11.3.2 Variables 93
11.3.3 Values 93
11.3.4 Constants 95
11.3.5 Operators 95
11.3.6 Functions 97
11.3.7 Built-in Math Solver API for User-Defined Functions 102
11.4 Using MATLAB®' as a Mathematical Solver 104
11.4.1 Setting up system for calling MATLAB® from Cameo Simulation Toolkit 104
11.4.2 Selecting MATLAB® as Mathematical Solver for Cameo Simulation Toolkit 107

1. MATLAB® is a registered trademark of The MathWorks, Inc.

4 Copyright © 2010-2011 No Magic, Inc.

CAMEO SIMULATION TOOLKIT

Cameo Simulation Toolkit is a MagicDraw plugin which provides a unique set of tools supporting the standard-
ized construction, verification, and execution of computationally complete models based on a foundational sub-
set of UML.

No Magic is the first in the industry to provide customers with an easy-to-use, standard-based executable UML
solution that integrates the semantics of different UML behaviors.

1.1 Introduction to Cameo Simulation Toolkit

The purpose of simulation is to understand the function or performance of a system without manipulating i,
either because the real system has not been completely defined or available, or because it cannot be experi-
mented due to cost, time, resources, or any other risk constraints. A simulation is typically performed on a
model of a system.

With Cameo Simulation Toolkit, you can execute a model and validate the functionality or performance of a
system in the context of a realistic mock-up of the intended user interface. The solution allows you to predict
how the system responds to user interaction or predefined test data and execution scenarios.

Cameo Simulation Toolkit contains the Simulation Framework plugin that provides the basic GUI to manage the
runtime of any kind of executable models and integrations with any simulation engines. The main functional-
ities of Cameo Simulation Toolkit are as follows:
(i) Simulation Window:
e Toolbars and Debugger Pane: to control the execution/simulation

e Simulation Console: to execute log outputs and command line for active engine
e Sessions Pane: to select the interested session of execution

e Variables Pane: to monitor the runtime values of each execution session

e Math Console: to communicate with Mathematical engine

e Breakpoints pane

e Triggers option

(i) Pluggable execution engines
(iif) Execution animation

(iv) Model debugger

(v) Pluggable events and data sources
(vi) Pluggable mockup panels

(Vi

(

vii) Model-driven execution configurations

viii) Pluggable expression evaluators and action languages

1.2 Key Features

Cameo Simulation Toolkit is capable of executing your UML or SysML models. The key features of Cameo
Simulation Toolkit are as follows:

(i) Simulation Framework: general infrastructure (simulation toolbars, simulation context menu,
simulation panes, etc.) and Open API for execution.

Model Execution

(i) State Machine execution engine: W3C SCXML (State Charts XML) standard, an open-
source Apache implementation.

(i) Activities execution engine: OMG fUML (foundational subset of Executable UML) standard.

(iv) Parametrics execution engine: allows Cameo Simulation Toolkit to execute SysML Para-
metric diagrams. SysML Plugin for MagicDraw is required for the engine to work properly.

The simulation sample projects are available in the <md.install.dir>/samples/simulation directory.

1.3 Installation

To install Cameo Simulation Toolkit, either (i) use Resource/Plugin Manager in MagicDraw to download and
install the plugin, or (ii) follow the manual installation instructions if you have already downloaded the plugin.

(i) To install Cameo Simulation Toolkit using Resource/Plugin Manager:

1. Click Help > Resource/Plugin Manager on the MagicDraw main menu. The Resource/Plugin
Manager will appear and prompt you to check for available updates and new resources. Click
Check for Updates > Check.

NOTE Specify HTTP Proxy Settings for connection to start MagicDraw updates and resources.

2. Under the Plugins (commercial) group, select the Cameo Simulation Toolkit check box and
click Download/Install.

3. Restart the MagicDraw application.

(i) To install Cameo Simulation Toolkit following the manual installation instructions on all platforms:

1. Download the Cameo_Simulation_Toolkit_<version number>.zip file.

2. Exit the MagicDraw application currently running.

3. Extract the content of the Cameo_Simulation_Toolkit_<version number>.zip file to the
directory where your MagicDraw is installed, <md.install.dir>.

4. Restart the MagicDraw application.

Cameo Simulation Toolkit allows you to execute the elements in a MagicDraw project. The elements that can
be executed must be supported by the execution engines in Cameo Simulation Toolkit. Any number of execu-
tion engines can be implemented, as separate plugins, and registered to Simulation Framework as the engines
for some particular types of model.

Model Execution

Table 1 -- Current Supported Execution Engines

Execution Engine Support Elements
Activity Execution Engine e Activity
e Activity Diagram
e Class whose classifier behavior is an Activity
e InstanceSpecification of a Class whose classifier behavior is an
Activity
State Machine Execution Engine | e State Machine
e State Machine Diagram
e Class whose classifier behavior is a State Machine

e InstanceSpecification of a Class whose classifier behavior is a
State Machine

Parametrics Exectuion Enigne e Block that contains Constraint Properties
e SysML Parametric Diagram

e InstanceSpecification of a Block that contains Constraint
Properties

Interaction Execution Engine e Sequence Diagram

e For more detail, see the Cameo Simulation Toolkit API
UserGuide.pdf in the <md.install.dir>/manual directory

You can create a simulation by either (2.1) executing the elements that are supported by the execution engines,
or (2.2) creating the execution configuration, set the element to be executed as the execution target of the exe-
cution configuration, and then execute the model from the execution configuration.

2.1 Simulation by Executing Elements

Cameo Simulation Toolkit allows you to execute a model through a context menu. You can open the menu by
right-clicking the element that you would like to execute.

To execute a model through a context menu:

1. Right-click an element either (i) on the diagram (Figure 1) or (ii) in the containment browser
(Figure 2), and then select Simulation > Execute.

Model Execution

Clas

[

Calculator |
Specification Enter
Symbal(s) Properties. .. Alk+Enter
Mew Diagrarm b
o To b
Refactor]
Seleck in Containment Tree Alt+E
Select in Inheritance Tree
Related Elernents]
Tools]
Stereotype ¢
Edit Compartment b
Presentation Options b
Inserk Mew Attribuke Chrl+AlE+HA
Insert Mew Operation Chrl+Al+0
Insert Mew Signal Reception Chrl+Alt+R.
Insert Mew Paork
Sirnulation J

Execute

2, | Add Breakpoink(s)

Chrl+Al+

Figure 1 -- Executing Model through Executable Element Context Menu on Diagram

Model Execution

Containment [E I T ¢
— =

=i BB Y B

--D simul Mew Elerment 3
ED syste Mew Diagrarm »
P & ;Eng Mew Relation b
Cpen in Mew Tab
Specification Enter
Behavior Diagram 3
Go Ta k
Refactor b
Select in Inheritance Tree
Related Elements]
Tools]
Stereokype]
Renarne Fz
[Copy Chrl+C
Copy LIRL
wE o Cuk Chrl+¥
W Delete Delete
Creake Symbol Ctrl+Shifk+y
Generate Code Framework, Chrl+G
Check Syntax
Generate Report, ., » O[%Execute Chrl+Al+5
Reverse fram Classpath @, ™ Add Breakpoink(s)
Simulation [
-

Figure 2 -- Executing Model through Browser Context Menu

2. The Simulation Window will open. The Simulation session will automatically be started and
displayed in the Sessions Pane (Figure 3). The session corresponds to the selected element in
the active diagram.

Model Execution

23 Simulation
Simulation
3 = . .
@ == O 2 1€ 2@ anination speed:
‘H »»_ Console li)ialr‘ﬂal:h Conscle =

_alculator [system] (Ready) gD

INFO : FIUML engine is skarked,

]

J Triggers:
Ba Wariables ¢ | o~ Breakpoints =
o

Marme Yalue

Calculator@21173h

= B 5lculator
: display : 5.
operandl ...
operandz ...
operation ...

MMEMOry & ..

co0o000

newhumb, ..

Figure 3 -- Run Execution Button in the Simulation Window

3. Click the Run Execution button > on the toolbar (Figure 3) to execute the model.

NOTE Cameo Simulation Toolkit will use different execution engines to exe-

cute different kinds of elements:
e Behaviors

e Class

e Diagram

e Instance Specification

2.1.1 Behaviors

You can select a behavior, either (2.1.1.1) Activity or (2.1.1.2) State Machine, and execute it.

2.1.1.1 Activity

If you select to execute a behavior, which is an Activity (Figure 4), Cameo Simulation Toolkit will execute it on
the Activity diagram whose context is the selected Activity (Figure 5). A new session (Activity) will open in the
Sessions Pane. If you click the session, the runtime object of the selected Activity will open in the Variables

Pane.

Model Execution

Conkainrnent

(m o 3

(m 3

[pr=y]

A = Rl i
E}E syskem

i)

E

B caleulatar

b
b

F--

coooo

o

-dis
-op
-op
-op
=
-ne

- [Caloulator

= [

B R

(LI
A

Mew Elermnent b
Mew Diagram]
Mew Relation b
Cpen in Mew Tab
Specification Enter
Behavior Diagram]
o To ¥
Refactor b
Select in Inheritance Tree
Related Elerments b
Tools b
Skerectype]
Rename Fe
Copy ChrliC
Copy URL
Cuk Chrl4-3
Delete Delete
Create Symbol Ckrl+Shif e+
Generate Report, ..]
Sirnulakion b

&

Execute

Add Breakpoink{s)

Chrl+ Al

Figure 4 -- Executing Activity

Model Execution

Cactivity Calculator | @Calculatnr]/J

sreadzelfs i B
) i Body =

— S dlglt
display = ALH.getYalueicale "display™s;

result if {display==null}
{
display=v
'
else
~t
n::aln:: g = di

ﬂppend ?|5F3'|3'5f— display + v
ALH. setvalueicale, "display’, display);"

T |

Figure 5 -- Animation of Activity Execution

2.1.1.2 StateMachine

If you select to execute a behavior, which is a State Machine (Figure 6), then it will be executed on the State
Machine diagram whose context is the selected State Machine (Figure 7).

12 Copyright © 2010-2011 No Magic, Inc.

Model Execution

Conkainrment (LI A 4
= =y

o @Ry B

El-E] Data
£ signals
EH-E3 simulation
B swstem
El-E Calculatae
G-(F Mew Element]
[Cald Mew Diagram]
e 3 di
o -ds Mew Relation b
D '|:|I:|E
£ -ops Cpen in Mew Tab
O -ops specification Enter
o -me
€Y M Behavior Diagrarn »
----- £ Code engineerir aoTo ,
Refactor b
Select in Inheritance Tree
Related Elements]
Tools]
Skerectype ¢
Renarme Fz
H Copy Chrl4-C
Copy LIRL
AT Chrl4-¥
T | Delete Delete
Create Symbol Ckrl+Shift+y
Expork Ta SCRML
Gaenerate Repark, .., b
Sirnulation »
-

e Execute

2, | Add Breakpoink(s)

ChrlalE+

Figure 6 -- Executing State Machine

Model Execution

"state machine Calculator [E'-:l".i Calculator lJ

.—:J T|

an

on

| appending |
| entry [append |

reset chgit
— . eqjusl result |

1 rea I
:] dy) entry [equal |
F J

pperation
reset | | operation |
. = entry Jreset | | entry ! operation |
off
|"’.
., e

Figure 7 -- Animation of State Machine Execution
You can also select to execute from an Activity or a State Machine diagram directly either by:

(i) opening the diagram and click the Execute button on the Simulation Window toolbar, or

(i) right-clicking the diagram and select Simulation > Execute.

The Behavior, which is the context of the diagram, will then be executed.

2.1.2 Class

You can select to execute a Class element that is not a Behavior. A simulation session will be created to exe-
cute the selected class. The runtime value whose type is the selected Class, will be created to store the simu-
lated values. If the selected Class has a defined classifier behavior, either Activity or State Machine (Figure 8),
then it will be executed once you have clicked the Run Execution button. For example, if you select to execute
the Calculator class (Figure 1), the simulation will be performed on the Calculator state machine (Figure 7).

Calculator Classifier Behavior= Calculatlﬁ

=

o

-dizplay ;. String -
-operand] : String
-operand? . String
-operation : String
-thermary . =tring
-nevyiumber © Boolean

Figure 8 -- Show the Calculator Class, having a State Machine as its Classifier Behavior

Model Execution

If the class does not have a defined classifier behavior (Figure 9), the parametric will be executed instead (only
if the selected class is a SysML Block containing Constraint Property(ies)).

Classifier Behawior=

| i
hlocks é s
E = 5 Ficak Ent
—E——— L
ks pecification nter
. *
E ES:: Eg*} Symbol{s) Properties. .. AlE+Enter
: Real [0..*)
3 Redl ED..*} LEuRistian >
e Real [0.4]
costaints Go To]
s1: Sum Refactor »
2 trigonometr
=3 Multiply Select in Containment Tree Alk+E

Select in Struckure Tree

Select in Inheritance Tree

Related Elements b
Sterectype]
Edit Compartment k
Presentation Options]
SysML Compartments]

Insert Mew Atkribute

Inzert Mew SysML Property]
Insert Mew Cperation Chrl+AE+O
Insert Mew Signal Reception Chrl+Al+R

Insert Mew Part

Sirnulation P |3 Execute Chrl4+-alt4+

Create Instance... @, Add Breakpoints)
-

Figure 9 -- Executing SysML Block without a Defined Classifier Behavior

Model Execution

par [Block] & [E5 8]J
a : Real [0..*] constraints
=1 : Sum
{Z=x+
b : Real [0..*]
: straints - Real
: Real [0..* y : Real #Can - Rea
y | s2 : trigonometry
{z=sin(x + ¥) * cos(y)}
¥ Real
d:Real[0.}] | v : Real sconatrairts
e : Real [0.."]

Figure 10 -- Animation of Parametric Execution

16 Copyright © 2010-2011 No Magic, Inc.

Model Execution

2.1.3 Diagram

To execute a diagram:

e Right-click a diagram and select Simulation > Execute (Figure 11). The element, which is the
context of the diagram, will be executed the same way a behavior or a class is executed.

Cactivity Calculator [@ Calculator u

A

Diagram Properties, ., Shift+Enter

Specification

\f « | Show Diagram Frame
AT Shiows Diagram Info

Show Cwnet

Ga Ta ¥)
ale,"display";
Select in Conkainment Tree Alk+E

Find in Diagram Ckrl+Shift+D

Ackivity Decomposition Hierarchy Wizard
arid]

L4 | Print Active Diagram .
[y, displayh,
Layauk]

Show Diagrams in Full Screen Fii 4

Clase Diagram Ckrl+F4
Close All Diagrams Buk Current Ckrl+5hift+F4
Close All Diagrams Chrl+-al+F4

Simulation || 3, Execute Chtl+alk+3

v s

@, “Add Breakpoink(s)

Figure 11 -- Executing Activity Diagram
2.1.4 Instance Specification

You can also simulate an InstanceSpecification. The runtime object and the runtime values will be created from
the selected InstanceSpecification and its slot values. These runtime object and runtime values will be used for
the execution. You can see more information about runtime object and runtime values in Section 5.4.2.

To execute an InstanceSpecification:

e Right-click an InstanceSpecification and select Simulation > Execute. The classifier of the
selected InstanceSpecification will be executed the same way a behavior or a class is

Model Execution

executed. However, the slot values of the selected InstanceSpecification will be used to create
the runtime values at the beginning of the execution (Figure 12).

package Dats[Class and Instance U

Classifier Behaviar= QSyStem_behavilu_r\}

-

-~

System |
-a: Integer
-b : Integer

instance : em

a=14
h=12

E Variahles |.__ E| E|
fo Yariables =
s
Mame Walue
EE Swstem Systemi@ 1497 a9
O a: Integer 15
b ¢ b Integer 1z

Figure 12 -- Runtime Values when Executing InstanceSpecification

2.2 Simulation by Executing the Execution Configuration

You can create a simulation by executing the Execution Configuration, which is a Class element having the
«ExecutionConfig» stereotype applied, through the (i) context menu Simulation > Execution or (ii) Simulation

Control toolbar.

(i) To execute an Execution Configuration through the context menu:

e Right-click an Execution Configuration and select Simulation > Execution (Figure 13).

18

Copyright © 2010-2011 No Magic, Inc.

Model Execution

«ExecutionConfigs -«
Calculator

wErecution Configs

“executionTarget = EHCalculator

I+1+1

log = | o

.g U Specification Enter

silent=Tfalse

& Symbolis) Properties.., alt+Enter
Mewy Diagranm ¢
GaTo ¢
Refactar b
Select in Conktainment Tree Alk+E

Select in Inheritance Tree

Related Elements b

Tools]

Stereotvpe b

Edit Compartment [

Presentation Options ¢

Insert Mew Attribute Chrl4-Alk-+a

Insert Mew Cperation Chrlalk+ O

Insert Mew Signal Reception Cterak+r | D Execute CErl+-Al+
Insert Meww Port o, ['Add Breakpoink(s)
Sirulation]

-

Figure 13 -- Executing from ExecutionConfig

(i) To execute an Execution Configuration through the Simulation Control toolbar:

e Select the execution configuration in the drop-down list (all of the execution configurations in
the open project will be listed in the drop-down list) on the Simulation Control toolbar and click
the Run ‘<name of execution configuration>’ Config button (Figure 14).

4L Caleulakor v | [»

3

| Run'Caleulatar Config |

Figure 14 -- Executing Configuration from Simulation Control Toolbar

For more information on how to use Execution Configuration, see Section 3.

Execution Configuration

3.1 ExecutionConfig Stereotype

zExecutionConfigs by zstereotypes 'y
Calculator ExecutionConfig
cExecution Configs [Class]
U= ITHIIG
executionTarget= ECalculator | |-silert : Boolzan [1] = false
— [-executionTarget : Element
'99 log -log : ExecutionLog
silent=false -resuttinstance : InstanceSpecification

Figure 15 -- An Execution Configuration

Cameo Simulation Toolkit provides a model-based execution configuration through the «ExecutionConfig» ste-
reotype. The «ExecutionConfig» configuration properties consist of:

executionTarget — the element from which the execution should be started.

silent — if the value is true, no animation (nor idle time) will be used.

ui — the user interface mockup configuration to be started with the execution.

log — the element in which the execution trace will be recorded.

resultinstance - the InstanceSpecification which the execution results will be saved as its slot
values. If resultinstance is not specified, then the execution results will not be saved event if the
executionTarget is an InstanceSpecification.

You can select and execute an execution configuration directly.

NOTE You can use Execution configurations as the target elements in other execution configurations in
the next release of Cameo Simulation Toolkit.

3.2 Execution Log

You can record all runtime event occurrences into a special model element by creating a new ExecutionLog
element (a Class having the «ExecutionLog» stereotype applied) and make a reference to the “log” property in
an ExecutionConfig before a simulation (Figure 16).

zetereotypes

aExecutionLogs ExecutionlLog
log [Class]

= -recordedalues | Property [*]
gm gﬂ %g; gggilg -record3ignals ;. Boolean [1] = false

i -recordActivation | Boolzan [1] = falze
-recordCalls : Boolean [1] = false
-recordCongtrairtFailures : Boolean [1] = falze

Figure 16 -- Execution Log

Execution Configuration

A model-based execution log/trace has many advantages and some of them are as follows:

e it can be used as a source for various customized reports and analyses using the MagicDraw

validation mechanism (as both are model-based).

e it allows you to import execution data into any other UML compliant tool.

You can record multiple simulation sessions or test results in the same «ExecutionLog» element. The session
starting time can be seen as the name of the attribute. Currently, you can record the following runtime data (see

Figure 17):

e Signal Instance (when recordSignals = true) under the “Signal Instances” node — timestamp
(i.e. the relative occurrence time in milliseconds: ‘O’ when start execution), signal type and

target (Figure 17).

e Sequence of Activation and Sequence of Deactivation (when recordActivation = true) under
the “Activation sequence” node — timestamp and type of element being activated/deactivated.

e Behavior Call and Operation Call (when recordCalls = true) under the “Behavior Calls” and
“Operation Calls” nodes, respectively — timestamp, type, target and value(s).

e Runtime Value (when the recordedValues attribute has at least one Property selected) under
the “Value Changes” node — timestamp, select Property and value(s) of the selected Property.

e Constraint Failure (when recordedConstraintFailures = true) under the “Constraint Failures”

node — timestamp, element, target and value(s).

Execution Session - 2011/02/123 11:16:09

Specification of Signal Instances
The Signal Instances containg a list of specific Signal Instances properties.

&

2011/0z/23 11:16:09 Signal Instances
R Elcianal Instances

-G e Timestamp Element

=
4| Value Changes ; -
4 Operation Calls | 1738 O start [signals]
- [B Behavior Calls | 8632 03 stop [signals]
e[Cu:un.strélnt Failures 575 O3 reset [signals]
- Activation sequence

El-E| Documentation/Hyperlinks

rEtN

e

% el @ & = History | €3 2011/02/23 11:16:09 [system: SimulationLogs] [v |

Figure 17 -- Example of Recorded Runtime Data, e.qg., Signal Instance (StopWatch_advanced.mdzip)

3.3 User Interface Prototyping

Cameo Simulation Toolkit allows you to use custom mockups, which can be referenced in a model-driven Ul

config. The most basic Ul config has two properties:

(i) Represented model element (Classifier)

Execution Configuration

(i) External Java class file implementing a MockupPanel interface

references external Java
class file

stereatype
wlls w * ul YREe w
External_Ul
[Component]
Trepresents = StopWWatch, -
gource = "StopifatchDisplay"} -gource : string
-represents ; Class

Figure 18 -- Using User Interface Prototyping

Whenever an execution engine creates a runtime object of a referenced classifier, a mockup Ul will be instanti-
ated and displayed. A MockupPanel interface allows a mockup to listen to all of the execution events, monitor
structural feature values, and trigger signals.

3.4 Ul Modeling Diagram Execution

The MagicDraw User Interface Modeling diagram becomes even more powerful and valuable when used with
Cameo Simulation Toolkit. Supported Ul components include:

e Frames: drag a Classifier to a Ul Frame to bind the Classifier to the Ul Frame (the «Ul»
stereotype will be automatically applied; its “represents” tag will then be set to the Classifier). In
this case, we say that “the Ul Frame represents the Classifier’. The “source” tag of the applied
«UlI» stereotype will also be set as

“com.nomagic.magicdraw.simulation.uiprototype.UIDiagramFrame” by default.

e Panels: a Ul Panel can hold any supported Ul components (buttons, labels, sliders,
checkboxes, text fields and even panels themselves).

e |f the Ul Panel resides in a Ul Frame, drag a Property of the Classifier the Ul Frame
represents to the Ul Panel to bind such Property to the Ul Panel (the
«NestedUIConfig» stereotype will be automatically applied; its “feature” tag will then
be set to the Property; and its “Text” tag will also be set to the name of such
Property). In this case, we say that “the Ul Panel represents the Property”.

o |f the Ul Panel (child) resides in another Ul Panel (parent), drag a Property of the
Classifier typing the Property the parent Ul Panel represents to the child Ul Panel to
bind such Property to the Ul Panel (the «NestedUIConfig» stereotype will be
automatically applied; its “feature” tag will then be set to the Property; and its “Text”
tag will also be set to the name of such Property). This functionality allows you to
bind nested parts (properties) of a Classifier to its correspondent nested Ul Panels
in a Ul Frame representing the Classifier.

e |n addition, you can reuse existing Ul components (all supported ones, except
frame) in an existing Ul Frame in another Ul Panel, by dragging the Ul Frame model
in Containment Tree to such Ul Panel (the «NestedUIConfig» stereotype will be
automatically applied if not already; and its “config” tag will then be set to the Ul
Frame).

e Group Boxes: similar usage as Panels.

o TextFields, Checkboxes, and Sliders: drag a Property to one of these Ul components to bind
the Property to such Ul components (the «RuntimeValue» stereotype will be automatically
applied; its “element” tag will then be set to the Property; and its “Text” tag will also be set to the
name of such Property). In this case, we say that “the Ul component represents the Property”.

Execution Configuration

Once represented, the Ul component will reflect the value of the represented Property in the
Variables Pane during execution, and vice versa.

e Labels: drag a Property to a Ul Label to bind the Property to such Ul Label (the
«RuntimeValue» stereotype will be automatically applied; its “element’ tag will then be set to
the Property; and its “Text” tag will also be set to the name of such Property). In this case, we
say that “the Ul Label represents the Property”. Once represented, the Ul Label will display the
value of the represented Property in the Variables Pane during execution.

e Buttons: a Ul Button can be used to 1) send Signal(s), 2) call Operation(s) or 3) call
Behavior(s):

e Sending Signal(s): drag a Signal to a Ul Button to associate the Signal with the Ul
Button (the «Signallnstance» stereotype will be automatically applied; its “element”
(“signal’) tag will then be set to the Signal; and its “Text” tag will also be set to the
name of such Signal). During execution, if this Ul Button is pressed, it will send the
associated Signal.

e Call Operation(s): drag an Operation to a Ul Button to associate the Operation with
the Ul Button (the «OperationCall» stereotype will be automatically applied; its
“element’ tag will then be set to the Operation; and its “Text” tag will also be set to
the name of such Operation). During execution, if this Ul Button is pressed, it will
call the associated Operation.

e Call Behavior(s): drag an Behavior (e.g., Activity) to a Ul Button to associate the
Behavior with the Ul Button (the «BehaviorCall» stereotype will be automatically
applied; its “element” tag will then be set to the Behavior; and its “Text” tag will also
be set to the name of such Behavior). During execution, if this Ul Button is pressed,
it will call the associated Behavior.

Figure 19 demonstrates an example of using MagicDraw’s User Interface Modeling Diagram with Cameo Sim-
ulation Toolkit.

Execution Configuration

Ealculal:ur b4 4B
Ml & ih-7im? i/ i@ i@ TiYBOM
1 Comman package ui[[E] Calculstor U —

= Mote 7

abe Text Box - Calculakor
B anchar -
A Containment -
' Dependency
E= Image shape
Diagram Cwerview

---- Separakar -

Containers
Frarne

[i'l Group Box
|j Tabbed Pane
& Tool Bar

|:| Panel

ﬁ acroll Pane
[Buttons

03 Text

% Ckher

w

< >
Figure 19 -- Example of Using User Interface Modeling Diagram

e Drag a Classifier to a Ul Frame.

e Drag each Signal to each Ul Button to assocated a Signal.

e Drag any Classifier's Property to a Ul Label to be represented.
e Reference the Frame in the “Ul” tag of an ExecutionConfig.

See the Calculator.mdzip sample for more details. Just drag any GUI elements to a diagram, click Execute,
and see them come alive!

NOTE

e The current version of Cameo Simulation Toolkit supports frames, panels, group boxes, labels,
buttons, checkboxes, text fields, and sliders only.

e Do not drag and drop model element of existing Ul Frame (from Containment Tree) on a
diagram to create one more ComponentView/Frame symbol on such diagram. Cameo
Simulation Toolkit still does not support 2 Ul symbols of the same model element yet.

e Other samples worth trying include: test_nested_UIl_panels.mdzip, test_Ul.mdzip,
StopWatch_advanced.mdzip, and SimpleUl_labelUpdate.mdzip.

Execution Configuration

3.5 Activelmage and ImageSwitcher

ImageSwitcher is a predefined subtype of Ul config. It is a simple, but flexible and powerful animation tool. All

you need is to create an «ImageSwitcher» element, specify a represented Classifier, and then create as many
attributes and different states as you wish to see in the animation. Each attribute is called «Activelmage» and

has the following properties:

e Image — the image that will be used in animation (browse the file or drag the image directly from
web browser).

e activeElement — the element that will use the image once it has been activated (normally the
state of a represented classfier).

e onClick — the signal that will be triggered once the displayed image has been clicked.

Figure 20 demonstrates an example of how to use ImageSwitcher and Activelmage (see FlashingLight.mdzip
sample):

package simulation| {E} simulatinnl:unfigu

«ExecutionConfigs g sImageSwitchers w
FlashLight LampBulb
wBzecution Configs frepresents = Light}
Ul= z&ctivelmage:-onfactiveElement = on, oncClick = tick}
LampBulb edctivelmages-offiactiveElement = off, anClick = tick}
FowerButtan
executmnTarggt: gaystem = ;&cﬁelm—age_» —__ _I = .s:_Au:tEelrrTage_» _G'—I
log = [E[FlashingLightTests | - Fl of
silent=true |{acti1reEIement= on, I |{.acti1reEIement= off, l
||:-nl3lick=tick} | ||:-nl3Iick=tick} |
«ExecutionLoges || @0 0l—
FlashingLightTests dmageSwitchers w
201001 2005 16:235:59 PowerButton
20100 2003 16:30:00 e
201 0M 2/05 16:35:52 USHIESEN IS Button}
20100 2105 16:45:49 eictivelmage:-onfactiveElement = Prezsed, onClick = releaze}
20101205 16:49:04 zdctivelmages-off{activeElement = Releazed, onClick = push}
201001 2003 16:51:23
20101 215 22:29:534 T T e ——
2010246 10:15:24 sdctivelmages u [Activelmages & |
20101 216 10:15:46 | off | on
2010M 2ME10:19:25 |
|factiveElement = Released, | |{acti1.reEIement= FPressed,
onClick = push} | onClick = release} |
—_—

Figure 20 -- FlashLight Sample

Once the FlashLight ExecutionConfig is executed, the mockup Ul will be displayed (Figure 21). You can then
click on the Power button (circle one) to start execution, i.e. making the light bulb blink (see Flash-
ingLight.mdzip sample).

Animation

X Ligh

E Button [g|

Figure 21 -- FlashLight Sample - Runtime Antimation

Active elements in a diagram will be annotated during execution using the same annotation mechanism used in
the active validation:

e Active and visited elements will be annotated with red and green respectively.
e Runtime values will be visible in the tooltip text of active elements.

NOTE e |f an execution trace remains visible in a diagram, click the diagram to clear it.

e |f a model is executed in silent mode by selecting an execution configuration whose silent tag
value is set to ‘true’, the animations will be disabled (See Section 3. Execution Configuration
for more information).

4.1 Active and Visited Elements

Active elements are the elements, which a simulation session is focused on (see Section 5.1 Understanding
Simulation Sessions for more information). It can also be considered that the active elements are the elements
that are currently being executed in a simulation session. They will be annotated with red (by default). Once the
active elements have been executed, they will become visited elements and be annotated with green by default
(Figure 22).

26 Copyright © 2010-2011 No Magic, Inc.

Animation

actlvrl]r Sy Stem[Syste m) h
(]

«readselfs J

—

e —

i

(" screateObjects LA :, «createObject») L (" screateOhbjects |
’ nght (] 1 Tlm er I | Button
Dbject alue nbject alue
“ \ : ohject alue

' «addStructuraIFeatureValue» ' «addStructuraIFeatureV alues | L_ = T -
light timer | | saddStructuralFeaturey' alues |

- = - 4 hutton
b r

(sreadStructuralFaatures | { sreadStructuralFaatures |
k_:Ej] light {ﬂ timer

'f'«readStruu:turalFeature»'\
h % — r b — & L{j] h uttn n J

, —

hject hject [O ——

"'«siarto bje?‘E!ehavior»."H «star‘[Ob]ﬁ‘Behav ior»"J’___

hject

kN 4 b

(sstartObjectBehaviars
syn

Figure 22 -- Animation: Active Element in Red and Visited Elements in Green

4.2 Customizing Animation Colors

There are three kinds of annotated elements in model execution: (i) active element, (ii) visited element, and (iii)
breakpoint element. By default, active elements are annotated with red, visited elements with green, and break-
point elements with yellow. Cameo Simulation Toolkit allows you to customize the color of annotated elements
through the Environment Options dialog. You can open the Environment Options dialog by clicking Options
> Environment on the MagicDraw main menu.

To customize animation colors:

1. Open the Environment Options dialog.
2. Select the Simulation node on the left-hand side (Figure 23).
3. Customize the colors of the active, visited, or breakpoint elements.

27 Copyright © 2010-2011 No Magic, Inc.

Simulation Debugging

Environment Options

Simulation options

B —=
hange various Simulation options and configurations., - [—
gl
m ——
----- (5| General Simulation
----- =2, Diagram — —
----- B Browser B2 = B BY
----- T Teamwark =
----- g@ V3 &itive Color M RGE [255, 0, 0]
----- 1w Update Wisited Color M RGE [0, 255, 0]
""" ER Netwark Ereakpoint Calar RaGB [255, 255, 0]
----- & Keyboard
_ =
----- (¥ Plugins

_____ & Resources Check Model Before Execution [+] true

_____ PV Path Yarisbles : Default Language ECMASCripk

-4 Speling =

..... i Launchers 1 Use FUML Decision semantics [| False

----- E Experience =

..... [F] External Tools Mathematic Engine Built-in Math Solver
----- = Eclipse UMLZ {v1.x) ¥MI

----- <}'=£. Eclipse UMLZ (vZ2.x) %ML {Name)

----- = Eclipse UMLZ (3.1 ¥MI (Description)

----- * Enterprise Architect Import

[Reset ko Defaults]

Figure 23 -- Customizing Animation Colors in the Environment Options Dialog

5.1 Understanding Simulation Sessions

Cameo Simulation Toolkit creates a simulation session(s) while a model is being executed. The simulation ses-
sion contains a context with a specified runtime value. The context of simulation session is the executing UML

element that can be either a Class element or a sub-type of a Class. When the context element is executed, a

runtime object will be created to store the simulated values.

You can create multiple simulation sessions during a single execution, for example, an Activity execution. If the
executed Activity contains callBehaviorActions, a new simulation session will be created to execute each call-

BehaviorAction. All of the simulation sessions will be shown in the Sessions Pane during execution. The Ses-
sions Pane will display the simulation sessions by their context elements in the tree node (Figure 24).

Simulation Debugging

2% Simulation

Simulation b

(O I =E=0 el)

¥ Console = | B2 Variables = .3.'3' Breakpoints = | < ¢ E

Figure 24 -- Sessions Pane

5.2 Simulation Debuger

Cameo Simulation Toolkit allows you to debug a running model by using the debugger buttons, i.e. Suspend,
Resume, Step into and Step over.

Table 2 -- Execution and Debugger Buttons

Button Name Function

Run Execution To run a selected simulation session.

Suspend To pause the execution of a selected simulation session in
[”] the Sessions Pane.

Resume To resume a suspended simulation session.

Step into To execute and run animation in the current active ele-
= ment of a selected simulation session in the Sessions
= Pane.

Step over To execute the current active element of a selected simu-

lation session and run animation in the background.

Terminate To terminate a selected session in the Sessions Pane. If
the selected session contains sub-sessions, all of the sub-
sessions will be terminated.

[l

You can also pause the execution of a model at pre-defined breakpoints (see Section 5.5), examine and edit
variables in Variables Pane (Section 5.4.1), or execute element-by-element using Step into / Step over button.

The Debugger Pane includes a player-like control panel for a step-by-step execution (see Table 2 above),
threads/behaviors with an expandable stack trace (Understanding Simulation Sessions), Variables Pane/run-

Simulation Debugging

time structure (Runtime Values Monitoring), Breakpoints pane (Breakpoints), and input/output console for cus-
tom commands or expressions evaluation (Console).

5.3 Simulation Console

5.3.1 Console Pane
Cameo Simulation Toolkit provide Simulation Console for displaying simulation information during model exe-

cution. The displayed information could contain hyperlink to the model element in the MagicDraw project. The
model element will be selected in containment browser when you click on the hyperlink.

¥_ Console

2011-02-16 13:29:39, 146 INFO ; **¥+* Instance Specification rawMaterialSupplier is skarted! ¥4+ -
2011-02-16 13:29:39,208 INFO ¢ [Solving] @ rawhat.e8

= ¥ = [0.002;0.002;0.005] aJﬁ

=3y =[0.1;0.25;0.25]

= z=xty

z =[0.10200000000000001;0.252;0.255]

>t =[0,10200000000000001;0,252;0,255]

#» c=PI*diag(diag(r*diag(r))

|: =

2011-02-16 13:29:52, 256 WaARM : The input parameter does not have supplied values.: W

==

Figure 25 -- Simulation Console with simulation information during parametric execution.

Simulation Debugging

Table 3 -- Console Pane Buttons

Button Name Function
Clear Console To remove all displayed simulation information in Simula-
tion Console.
E
Show Runtime Informa- To the runtime information of the Cameo Simulation Tool-
= tion kit. The runtime information compose of the registered
'L._l_..“- execution engines, available scripting engines and the

active simulation sessions (Figure 26).

¥»_ Console
& @

2011-02-16 16:32: 23,665 IMFO
2011-02-16 16:32:23,665 INFO 1 Execution engines !
2011-02-16 16:32: 23,665 INFO : FUML Engine
2011-02-16 16:32:23,665 INFO ¢+ SCSML Engine
2011-02-16 16:32:23,665 IMFD : Parametrics Engine
2011-02-16 16:32: 23,665 IMNFO
2011-02-16 16:32:23,665 INFO ¢ Scripting engines @

2011-02-16 16:32:23,665 INFC ; Mozila Rhino [is, rhino, JavaScript, javascript, ECMASCript, ecmascript]
2011-02-16 16:32: 23,665 IMFO
2011-02-16 16:32:23,665 INFO ¢ Active sessians |
2011-02-16 16:32: 23,665 IMFO

=
Figure 26 -- Runtime Information of Cameo Simulation Toolkit

5.3.2 Simulation Information

There are 6-levels of information which can be displayed in the Simulation Console (ascending sorted by prior-
ity):

e TRACE: Trace information.

e DEBUG: Debuging information.

e INFO: Normal information.

e WARN: Warning information.

e ERR: Error information.

e FATAL: Fatal information.
By default, only the information with priority equal to INFO and higher (WARN, ERR, FATAL) will be displayed in
Simulation Console. You can customize the information displayed in Simulation Console by editing the simula-

tion.properties file in the data directory in MagicDraw installation directory.

You can use text editor to edit this file. Go to log4j.category.SIM_CONSOLE and change from first parameter
the lowest priority level that can be shown in the Simulation Console (INFO is the default value).

log4j.category.SIM_CONSOLE=INFO,SimConsoleApp,SimXMLApp

Simulation Debugging

For example, you could change the first parameter of log4j.category.SIM_CONSOLE to TRACE for allow Sim-
ulation Console to display all level of simulation information.

log4j.category.SIM_CONSOLE=TRACE,SimConsoleApp,SimXMLApp

You can see more information on customizing display in Simulation Console from the comment in the simula-
tion.properties file.

5.3.3 Simulation Log File

During execution, the simulated information will be displayed in the Simulation Console. However, the Simula-
tion Console is limited to display only 60,000 characters for the sake of performance. If the simulation informa-
tion exceed the maximum capacity, only the latest 60,000 characters will then be displayed. Nevertheless, your
old simulation information will be automatically archived in the simulation.log file in user home directory
(<User home directory>/.magicdraw/<version>). The simulation.log file is an XML file (or a text file - to cus-
tomize it, see the comment in the simulation.properties file) that record all simulation information that had
ever displayed in the Simulation Console during model execution.

5.4 Runtime Values Monitoring

5.4.1 Variables Pane

You can select a session in the Sessions Pane (Figure 27) to display the runtime objects and values that cor-
respond to the context element of a selected session in the Variables Pane.

53 Simulation
Sirnulation £l X
{Q NEE0O »[&lele ®)
2% Gessions Ba Watishles
B slculakor [system] (5tarted) =
. E u:uatr [s aIIatu:ur] [Started) e =
harme Yalue
E-E Calculator [ready] Calculatori@ 554216
-~ O display 1 Skring 200
- ¢ operandl ; String 120
- £ operandz 1 Skring
-+ 3 operation : Skring +
-+ 3 memory - Skring
-) mewhumber @ Boolean true

Figure 27 -- Variables Pane of a Simulation Session

When a model is being executed, (5.4.1.1) a context, (5.4.1.2) runtime objects, and (5.4.1.3) runtime values will
be created to store the simulated values of the model.

Simulation Debugging

5.4.1.1 Context

A simulation session is always associated with its context of execution. The context of a simulation session is a
Class or one of its subtypes. When a context element is executed, a runtime object (of the context’s type) will
be created to store the runtime values. In Figure 27, the context of the selected simulation session is the “Cal-
culator” class.

5.4.1.2 Runtime Object

A runtime object is the simulated value of a Class. In other words, it is a runtime instance of a Class, and hence
of the context as well. In Figure 27, the runtime object of the simulation session context is the “Calcula-
tor@155d21b” instance. Since the runtime instance is the “Calculator” Class type’s , it could contain structural
features (which corresponds to the Class attributes), for example, “display” and “operand1”.

5.4.1.3 Runtime Value
A runtime value refers to the value of the structural features mentioned in section 5.4.1.2 above, for example,
“200” and “120”. However, if the type of a structural feature is a classifier, its runtime value can also refer to

another runtime object of a structural feature type.

The Variables Pane (Figure 27) displays the structure of an executing model and the runtime values during the
execution of the model. This pane contains two columns: (i) Name and (ii) Value:

(i) Name column

The Name column represents the context and its structural features. If the context is a State Machine session’s,
the current state of the context will be displayed in square brackets. If a structural feature is typed by a Class,
which is the context of another State Machine session, the current state of such context will also be displayed in
square brackets, after the structural feature.

(i) Value column

The Value column represents the runtime values of those structural features in a Name column. A runtime
value can be the input or output of an execution. You can directly edit the runtime values in the Value column if

they are of the following types: Boolean, Integer, Real, and String.

Table 4 -- Variables Pane Toolbar Buttons and Functions:

Button Name Function

Refresh To refresh the tree and values of the Variables Pane.

|

P
Export to New Instance To create a new InstaceSpecification and export a

IE'- selected runtime object to a newly-created InstanceSpeci-

= fication.

Export to Instance To export a selected runtime object to an existing Instanc-

eSpecification. All of the slot values of the InstanceSpecifi-
cation will be replaced by the runtime values of the
runtime object.

[1]4

5.4.2 Runtime Object created from InstanceSpecification

At starting point of model execution, the runtime object will be created for storing the runtime values. If the ele-
ment which is selected for execution is InstanceSpecification or the ExecutionConfig whose executionTarget is

Simulation Debugging

InstanceSpecification. The runtime values will be created from the slot values. They will be assigned to the run-
time object’s structural features which equivalent to the slot’s defining feature.

If the slot of an InstanceSpecification is empty, and the slot’s defining feature has defined default value, then the
runtime value will be created from the default value and will be assigned to the runtime object’s structural fea-
ture instead. Figure 28 -- show the runtime object that is created for executing pipe InstanceSpecification. The
InstanceSpecification contains only one slot value of lenght. Then, the runtime value which is created for the
length structural feature of the runtime object, will be equal to this slot value (1.0). For the runtime values of
radius and thickness, they will be equal to the default values of radius and thickness property of Pipe class
(0.05 and 0.002 respectively).

B
L= fa Yariables =
+radiuz : flost = 0.05
+length : float = 0.7 o B
shickness ; float = 0.002 A=
Mame Yalue
E-E Pipe Pipe@esS2a6
pipe : Pipe & radius : floak 0.05
length ="1.0 @ length : Float 0,75
b (3 thickness : Float 0,002

Figure 28 -- Variables Pane showing the Runtime Object

5.4.3 Exporting Runtime Objects to InstanceSpecification

You can export a runtime object, which is shown in the Variables Pane, to a model as an InstanceSpecification.
You can export it to either (i) a newly-created InstanceSpecification or (ii) an existing InstanceSpecification. The
values of a runtime object will be set to the slots of an InstanceSpecification.

(i) To export a runtime value to a new InstanceSpecification:

1. Either (i) click a row that has a runtime object to be exported in the Name column and click the
Export to New Instance icon on the Variables Pane toolbar or (ii) right-click it and select
Export to New Instance (Figure 26).

35

Simulation Debugging

operation | String

£°% Simulakion
Simulation wl
(O nEEo »8lells @)
fo ¥ariables
R
Calculator [system:iCalculator] (Started)
Mame Yalue
%’ Export bo Mew Instance j
- disf %
= Export ko Instance
- {3 operandz | String
s
e
8]

memory @ Skring

newhumber © Boolean

true

Figure 29 -- Export to New Instance Context Menu
click OK (Figure 30).

2. The Select Owner dialog will open. Select the owner of the created InstanceSpecfication and

E Select Owner [zl
E-[E Data
-7 signals
B3 simulation

Sy stEm

--D I Modeling Customization [IUI-Probokbyping Customization, mdzip]
3 UMl standard Profile [UML_Standard_Profile.<mil]

SimulationPrafile [SimulationProfile, mdzip]

UL Prokatyping Profile [UT Protokyping profile, xmi]

Zancel

Figure 30 -- Selecting an InstanceSpecification Owner in the Select Owner Dialog
(i) To export a runtime value to an existing InstanceSpecification:

1. Either (i) click a row that has a runtime object to be exported in the Name column and click the
Instance (Figure 31).

Export to Instance icon on the Variables Pane toolbar or (ii) right-click it and select Export to

Copyright © 2010-2011 No Magic, Inc.

Simulation Debugging

£°% Simulakion
Simulation el X
(O nEEo »8lells @)
£} Sessions X fo ¥ariables
: Calculator [systern] (Started) A
fe[F Caloulator [svstem:: Caloulator] (Started)
Mame Yalue

= ol

=i 0 % Expork ko Inskance l\r\

-~ {3 operandZ ; String T
= 3 operation ; Skring -

- 3 memory : Skring

= {3 newhumber : Boolean true

Figure 31 -- Export to Instance Context Menu

2. The Select Instance dialog will open. Select an InstanceSpecification that will be used to save

the runtime object (you can select only the InstanceSpecification that has the same classifier as
the runtime object) and click OK (Figure 32).

m Select Instance [z|

B Data
El signals
--El sirnulation
El syskem
--El LI Madeling Customization [UI-Protakyping Customization, mdzip]
--B ML Skandard Profile [UML_Skandard_Prafile,xmil]
-- SimulationProfile [SimulationProfile . mdzip]
-- 11 Protobyping Profile [IUI Protokyping profile. xoml]

calculator @ syskem: iCalculator

Figure 32 -- Selecting an InstanceSpecification in the Select Instance Dialog

5.5 Breakpoints

Cameo Simulation Toolkit allows you to add or remove breakpoints to or from model elements. The model exe-
cution will be paused when these model elements are activated during the execution. You can open the Break-
points pane to see and manage all of the existing breakpoints in an active project. The Breakpoints pane lists
all breakpoints with their properties shown in separate columns (Figure 33).

36 Copyright © 2010-2011 No Magic, Inc.

Simulation Debugging

£°% Simulakion
Sirnulation el M
- = e =l ol I
{ @ » = E [> lEisl” {5 Animation speed: J b
2% Sessions < | ©8 Variables x OO Breakpoints > | . Console
o_ g
Enabled Elerment Condikion Suspend
® sppending [system:: Calculator:: Caleulator::iom::] Both
krue calc 1 system: iCaloulator (Parameter: calc:Calcula, . on Exit
krue @® [system::Calculabor::iCalculakor::] 2n Enkry
Figure 33 -- Breakpoints Pane
Table 5 -- Breakpoints Pane Columns

Column Function

Enabled To display the enabled/disabled states of a breakpoint. If the value is true then
the breakpoint is enabled. Otherwise, the breakpoint is disabled. The execu-
tion of a model will be suspended at that particular breakpoint only when the
breakpoint is enabled (true).

Element To represent a model element to which each breakpoint is applied. The execu-
tion of a model will be suspended when the symbol of the element is activated
or deactivated (depending on the value in the Suspend column).

Condition To represent a breakpoint condition, a boolean expression, that will be evalu-
ated when the execution of a model reaches the element to which a breakpoint
is applied. The execution will be suspended at that particular element/break-
point when the result of the boolean expression is true. If the conditional is not
defined, the execution will always be suspended when it reaches that particu-
lar breakpoint.

Suspend There are three kinds of execution suspensions: (i) On Entry, (ii) On Exit, and

(iii) Both.
(i) On Entry: the execution of a model will be suspended when a breakpoint’s
element is activated.

(ii) On Exit: the execution of a model will be suspended when a breakpoint’s
element is deactivated.

(iii) Both: the execution of a model will be suspended on both activation and
deactivation of a breakpoint’s element.

5.5.1 Adding Breakpoints

You can add a Breakpoint to a model element using the context menu.

To add a Breakpoint to a model element:

e Right-click a model element in either the containment browser or the symbol of the model
element in a diagram, and then select Simulation > Add Breakpoint(s) (Figure 34).

Simulation Debugging

| | \L] .H:' l Body="
sreadSelfs _é - i
= digit)
= specification Enter Ay = ALH. getvalue(cale "display™;
play==null
Symbolis) Properties.., Alt+Enter
GoTo p PY=Y
Refactar r
Select in Conktainment Tree Alk+E]
Ay = display + v
Related Elements 2
Tools » Eetvaluelcale, "display”, display)”
Sterectype] v
Edit Compartment »
Show Stereobypes »
» || Show Tagged Yalues
Show Cirner »
« | Wrap Words
Sirnulation r
-
2, Add Breakpoink(s) [,\\5

Figure 34 -- Adding a Breakpoint(s)

5.5.2 Removing Breakpoints

You can also remove a Breakpoint can be removed using the context menu.

To remove a Breakpoint:

e Right-click a model element that has a breakpoint(s) and select Simulation > Remove
Breakpoint(s) (Figure 35).

Simulation Debugging

1 di It "% l Body="
greadSelfs - digit |
B Specification Enker ‘apﬁ;yﬂl:?ﬁn?walue{calc' ClEklag:
b —=
Symbol(s) Properties. .. Alk+Enter
ay="u
Go Ta] Y
Refactor r
Select in Containment Tree Alt+E i
ay = display +v
Related Elements »
Tools » setvaluadcale, "display”, displayd”
Skereotype] /
Edit Compartment r
Show Stereatypes r
w | Show Tagged Values
Showa Ciwrner »
» | Wrap Words
Sinnulation 3
-
Z_ Remowve Breakpoink{s) h

Figure 35 -- Removing a Breakpoint

You can also use the Remove Breakpoint(s) or Remove All Breakpoints toolbar button or the context menu
of the Breakpoints pane to remove all of the existing breakpoints (Figure 36).

Validation and Verification

23 Simulation
Sirnulation €l X
{® | =0 }}_I'EE}I'EEIOO {2 Animation speed: j b
£% Sessions | B9 Variables x .3.0 Breakpoints > | ¥ Console
o_ o2
Enabled Element Condition Suspend
krue O appending [system: i Calculator: i Calculator on::] Both

e calc @ system::Calculator (Parameter: calc:Calc gy

krue @® [system::Calculator: i Caloulakor::]
L true O [system::Caloulator::Caloulator] ©_ Remove Breakpoink(s) %

Open Specification

o= Remove Al Breakpaints

L]
=

Disable Breakpoink{s)

i
i

Select in Containment Tree Alt+B

Figure 36 -- Removing Breakpoints Using the Breakpoints Pane Context Menu

Before executing your UML or SysML model, you need to make sure that it has been modeled correctly. Cameo
Simulation Toolkit can help you validate a model against a set of validation rules before executing it.

To validate a model:

1. Click Options > Environment on the MagicDraw main menu to open the Environment
Options dialog (Figure 37).

40 Copyright © 2010-2011 No Magic, Inc.

Validation and Verification

41

Simulation options
Change warious Simulation options and configurations. H—.

Environment Options

""" B General Simulation
----- == Diagram
----- % Browser
----- o8 Tearnwark =

""" S CYS Aictive Calor M RGE[255, 0, 0]
""" % Update visited Color W RGE [0, 255, 0]

----- £ Netwark Breakpaint Color RiGE [255, 255, 0]
----- & Keyboard
: B
----- (T Plugins
----- {5 Resources
----- PY¥ Path variables

—438 Spelling E
..... [Launchers Use FUML Decision semantics [| False

B4 |l= =t =

(3 “heck Model Before Execution %rue
Defaulk Language EdRASCript

= Crue

----- E Experience =
..... [B] External Tools rlathermatic Engine Built-in Math Solver

----- B Eclipse UMLZ (v1.3) XM
_____ = Eclipse UMLZ (v2.) XM Check Model Before Execution
----- T Eclipse UMLZ (v3,x) XM

----- Er# Enkerprise Architeck Import
----- 2 Macros

----- Report Wizard
.....) psport v [Reset to Defaulks]

Figure 37 -- Checking Model before Execution in the Environment Options Dialog

2. Select the Simulation node on the left-hand side pane and select the Check Model Before
Execution check box.

3. Click OK.

4. Execute your model. A dialog will open, asking whether you want to load the required profiles
that contain the validation rules to validate your model (if your project does not contain the
required validation rules) (Figure 38).

Question fE

The walidation rules are not loaded, Would you like to load them?

Figure 38 -- Dialog Prompting the Validation Rules

Copyright © 2010-2011 No Magic, Inc.

State Machine Simulation

5. Click either (i) Yes to load the validation rules and validate the model before the execution or (ii)
No to execute the model without validating it.

Cameo Simulation Toolkit allows you to perform a State Machine Simulation (State Chart Simulation) on exist-
ing State Machine diagrams, based on the W3C SCXML standard. This kind of simulation is frequently used in
the early state of software development by designers or analysts to test the flow of the software to be devel-
oped.

The W3C SCXML standard provides a generic state machine-based execution environment based on Harel
statecharts. SCXML is capable to describe complex state machines, including sub-states, concurrency, history,
time events, and many more. Most of the things that can be represented as a UML state chart such as business
process flows, view navigation bits, interaction or dialog management, and many more, can leverage the
SCXML engine.

With the state machine execution build, you can simulate an executable model both as a demonstration tool
and to validate and verify the system behavior at key milestone reviews. In addition, Cameo Simulation Toolkit

supports the UML state machine export to standard SCXML files for further analysis or transformations
(through the state machine context menu).

7.1 Supported Elements

Most of the elements in a State Machine diagram are supported (Table 6).

State Machine Simulation

Table 6 -- Supported Elements in StateMachine Diagram

Exportable to
Element Type Executable (Yes/No) |SCXML (Yes/No)
state Yes Yes
composite state Yes Yes
orthogonal state Yes Yes
submachine state Yes Yes
initial state Yes Yes
final state Yes Yes
onEntry Yes Yes
onExit Yes Yes
onTransition Yes Yes
doActivity Yes Yes
time event Yes Yes
deep history Yes Yes
shallow history Yes Yes
transition-to-self Yes Yes
choice Yes Yes
’ NOTE ‘AII of the elements in a State Machine diagram (to be executed) must have names.

7.2 Adapting Models for State Machine Simulation

Currently, Cameo Simulation Toolkit can execute only the elements whose types specified in Section 7.1. Thus,
you need to modify your model so that only the supported (executable) elements are included in your State
Machine diagram.

7.2.1 Defining Trigger on Transition

A runtime object will change its state when it receives a trigger. Therefore, a transition should have a defined
trigger. A trigger can be either a signal or time event.

State Machine Simulation

trigger;:Event Type = "SignalEvent" | |trigger:Event Type = "TimeEvent'

trigger:Signal = Estart trigger:When=1s
= i
hS
=, |'Im|'| st (1)
N I B
ready start running |

O |
%| ertry Jreset ertry fincrease |

| stopped

Figure 39 -- Triggers on Transitions (See Sample Project - StopWatch.mdzip)
7.2.2 Using Guard on Transition

You can specify the guard conditions on transitions using any action language. Open test_guard.mdzip to see
an example of how to specify guards on transitions.

You can use the properties of a context classifier (the classifier that is the context of a State Machine diagram)
in guard expressions as variable names. The real values of the variables will be resolved at runtime. In
test_guard.mdzip, the values come from the slots of the instance of the context classifier (see the instance
diagram in the sample project).

state machine Clazsz [E—-j Clazs U

| state2 |

1 [ash] e
H1 state1 |

=1 [b=a) 0

instance : Class

a=14a
h=24

Figure 40 -- Test_guard Example

State Machine Simulation

7.2.3 Behaviors on Entry, Exit, and Do Activity of State

States can have defined behaviors at Entry, Exit, or Do Activity. Cameo Simulation Toolkit will create a new sim-
ulation session to execute those defined behaviors. A defined behavior can be an Activity, State Machine, or
OpaqueBehavior. The execution engine that corresponds to a defined behavior will be used to execute a

model. If the defined behavior is OpaqueBehavior, the ScriptEngine will be used to execute the code in the
body of OpaqueBehavior.

Entry = qreslg_q Entry = Qincreaslﬁ

| .

| ready
._ _*'| entry freset

start

running

entry ! increase

| stopped paused

£53 Simulation

Simulakion il

(O NEzEO »Elele)

X

{2} Sessions X Tz Yariables
Elg Skaptwatch [swstem] (Skarted) . . a ==
=S e N Stoptitatch [system: :Stoptwatch] (Starked)
Lt Increase bime [system: :Stoptatch] (Starkd || Name Walue

= B Skophyabch [running] e epag=les g ke el
b 03 bime ; Integer [1] 1

Figure 41 -- The Execution of Behavior on Entry of State (See Sample Project - StopWatch.mdzip)

7.3 Running State Machine Execution

A state machine execution will be performed when the following elements are selected for the execution:
e State Machine
e State Machine diagram
e Class whose classifier behavior is defined by State Machine

e InstanceSpecification whose classifier is a Class that has a defined classifier behavior with
State Machine

45 Copyright © 2010-2011 No Magic, Inc.

State Machine Simulation

During a state machine execution, the state of a runtime object will be changed by a trigger. The trigger can be
either a signal or time event. If it is a signal event trigger, the signal can be sent to a runtime object to trigger it
from one state to another. To send the trigger signal, you have to select the runtime object, which is the target
recipent for the signal, in the Variables Pane. All signals that can be received by a selected runtime object will
be listed in the Triggers drop-down menu on the Simulation Window toolbar (Figure 42).

2% Simulation
Sirmulation a %
Q 0 = E=0O » &8 % @ anmation speed:] Triggers: | O3 digit [sianals] v
- - A digit [signals]
{3} Sessions Es variables 3 equal [signals]
gES A off [signals]
Mame Value
- & operation [=i
= M alculator [off] Calculator@s | P) [<ia
. 3 reset [signals]

2 display : String

@ operandl @ String

& operandZ : String

¢ operation @ String

OF mernory - Skring

L o3 newhumber : Boolean

Figure 42 -- Triggers Drop-down Menu

A signal can be sent to a runtime object through a Mock-up User Interface. See more information about Mock-
up in Section 3.4 Ul Modeling Diagram Execution.

7.4 Sample Projects

The State Machine Simulation sample projects are available in the <md.install.dir>/samples/simulation/tests
directory. The sample projects include:

7.4.1 test_regions.mdzip

7.4.2 test_timers.mdzip

7.4.3 test_guard.mdzip

7.4.1 test_regions.mdzip

This sample demonstrates the use of an orthogonal state with parallel regions, and entry or exit activities.
e An Entry activity will be executed right after a state has been activated before any other states
in the inner regions.

e All of the initial states in all regions will be activated at the same time. It demonstrates multiple
active states at the same time.

e The events list in Simulation Console contains the triggers of all outgoing transitions of all active
states.

e If one of the parent's state outgoing transitions is triggered, an exit activity will be executed
before the state is deactivated.

7.4.2 test_timers.mdzip

This sample demonstrates the implementation of timing events in State Machine.

Activity Simulation

e The transitions with specified time events will be automatically triggered after a specified
amount of time (in seconds or milliseconds).

e Only relative time (delays) are supported.

7.4.3 test_guard.mdzip

This sample demonstrates the ability to specify and resolve guard conditions on the transitions.
e The properties of a context classifier can be used in the expressions as variable names.
e The real values of the variables will be resolved at runtime.

e If this is the case, they come from the slots of the instance of the context classifier (see the
Instance diagram).

8.1 About Activity Execution Engine

Cameo Simulation Toolkit provides the Activity Execution Engine that allows you to perform an Activity Simula-
tion (Execution) on Activity Diagrams or Activity Elements. Cameo Simulation Toolkit includes the implementa-
tion of OMG Semantics of a Foundational Subset for Executable UML Models (fUML), which is an executable
subset of standard UML, that can be used to define the structural and behavioral semantics of systems. fUML
defines a basic virtual machine for the Unified Modeling Language, and the specific abstractions supported,
enabling compliant models to be transformed into various executable forms for verification, integration, and
deployment.

Various UML activity diagram concepts are supported, including object and control flows, behavior and opera-
tion calls, sending and accepting signals and time events, pins, parameters, decisions, structured activity
nodes, and many more.*

The Activity Execution Engine features include:
e fUML 1.0 specification support

e Any action languages in opaqueBehaviors, opaqueExpressions, decisions, guards, constraints
(see 11.4 Using MATLAB® as a Mathematical Solver for more details)

e CallBehaviorAction with nested diagrams execution and animation

e SendSignalAction can be used to send signal to global event queue to be consumed by any
other engine (for example, state machine)

NOTE e Activities that will be executed must be owned in a Package or Class only. As a workaround,
the CallBehavior actions, owned by the call behaviors in a package, will be used for the entry/
do/exit behaviors in states.

e The guards on an ObjectFlow are not boolean expressions in fUML. They contain a value that
should match with the runtime value that flows on the ObjectFlow during execution. You can
change this mode to a regular UML (boolean expression) by changing the Environment
Options-Simulation-Use fUML Decision Semantics value. The value is false (UML mode) by
default.

Activity Simulation

8.2 Creating Model for Activity Execution

You can simulate a UML activity or a classifier whose classifier behavior is defined by an activity. This section
will demonstrate how to create a simple, executable Activity model by using the following steps:

i) Create a class containing two properties typed by Integers.
i) Create an activity to print the summation value of the two properties.
i) Assign the activity as the classifier behavior of the created class.

iv) Create an opaque behavior to print the summation value of two input parameters of type Inte-
ger.

(v) Write a script to print the summation of the given integer values that are referred to by the two
input parameters.

(vi) Complete the activity diagram of the class.

(vii) Create a ReadSelfAction to read a runtime object that will be supplied to the input pins of
both readX and readY actions.

(viii) Create an InstanceSpecification and assign the values to the slots that correspond to the
two created properties.

(
(
(
(

(i) To create a class containing two attributes typed by Integers:

1. Create a new UML project by clicking File > New Project... on the main menu. The New Proj-
ect dialog will open (Figure 43).

Create a new blank UML project
Specify a projeck name, seleck a lacation ko skore the newly created project, and click Ok,

General-Purpose Modeling 2 | Marne: !Simple.ﬂ.ctivityExecutiDn |
@ Project location: | | Z]
ze Zase : :
Rroject [] create directory For praject and related data
Project Guide to
From Existing ML Dizgrams
Source Code Project

<

Systems Engineering

<

Enterprise Modeling

Business Process Modeling

L

Service-Oriented Modeling

other

<

Figure 43 -- New Project dialog

Activity Simulation

2. Select UML Project from the General-Purpose Modeling group and specify the project’s
name, for example, “SimpleActivityExecution”.

3. Specify the location where you want to save your project file, and then click OK.

4. Right-click the Data model in the containment browser and select New Element > Class. A
new class element, which is the context of the activity, will be created in the containment
browser. Name the created class, for example, “SumPrinter”.

5. Add two properties: (i) x and (ii) y of type Integer.

(i) Right-click the SumPrinter class and select New Element > Property. Type X to
name the property (Figure 44). Right click x and select Specificaton to open its
Specification dialog. Select Integer as the property type (Figure 45).

EIE Daka
: B+ECg UML Standard Profile [UML_Standard_Profile. xml]
E-E SumPrinker

Y —

------ :@ Code engineering sets

Figure 44 -- Creating New Property x’ for SumPrinter

Activity Simulation

Property - x @

specification of Property properties

Specify properties of the selected Property in the properties specification table, Choose the Expert ar
&ll options from the Properties drop-down lisk bo see more properkies,

J]I:l

TN
H_U_l

E& rﬂg S = - Hiskary :| @ = [SumPrinter] |
9] E i
E]". Documentation/Hype; EE el ||§| B B Prnperties:i.ﬁ.ll w |['§C iCustamize
- Usage in Diagrams .
5 Inner Elements Redefined Property A
4| Relations Redefinition Conkext =] sumPrinker
1) Tags Specifying Elerment
| Constraints Subsetted Property
Language Properties Supplier Dependency
""" . Traceabilicy Templake Parameter
Ta Da
v T - o= [
Type Modifier ! makch Found
Upper <L IMSPECIFIED =
Upper Yalue m Inkeger [UML Standard Prafile:: JMLE
Wisibility bt
Type
The tvpe of the TypedElement.
< B E ¢ | > ||

ESEIERE

Figure 45 -- Selecting Property Type

(i) Repeat the steps to create property y (Figure 46).

=- @ Data
! l Eg UML standard Profile [UML_Standard_Prafile.xmi]
B sumPrinker
O o-x Integer

@ Code englneerlng sets

Figure 46 -- SumPrinter Class with Properties X and Y of Integer Type

Once the properties x and y have been created, define the behavior of the created class by specifying the clas-
sifier behavior of the SumPrinter class with a UML Activity element.

(ii) To create an activity to print the summation value of the two properties:

1. Right click the SumPrinter class in the containment browser and select New Diagram > Activ-
ity Diagram to create a new Activity under it.

2. Name the diagram “PrintSum”.

50 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

Now that the activity has been created, assign it as the classifier behavior of SumPrinter.

(iii) To assign the activity as the classifier behavior of the created class:

1. Right-click the SumPrinter class in the containment browser and select Specification to open
its Specification dialog (Figure 47).

Class - SumPrinter

Specification of Class properties

Specify properties of the selected Class in the properties specification table. Choose the Expert or all
opkions from the Properties drop-down lisk bo see maore properties,

t g

% S o= = Histary :| E sumPrinter
= mma SumPrinter
B-{E| Documentation/Hyperli R = B B Properties:| All w |[‘§C Custnmize]

-] Usage in Diagrarms

¥ . B Aktributes Collaboration Use =
B Parts Reprasentation
Ownied Portk

Operations

. Signal Receptions Classifier Behavior «3 PrintSum (=]
B[] Behaviors Cwned Behavior |

~[E) Template Parameters || Redefined Classifier ! match Fourid
E-[&] Inner Elements : <LINSPECIFIED =

: Relations Aktribute < Printsurn [SurmPrinter]

i Conskrainks Class
- Language Praperties Inhetited Member

| £

Classifier Behavior
& behavior specification that specifies the b

=leiwe

< | @ E]

Figure 47 -- Assigning the Classifier Behavior of SumPrinter

2. Select All from the Properties drop-down menu to make sure that all of the properties are
listed in the dialog.
3. Click Classifier Behavior and select the PrintSum activity.

51 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

Activity - <>

specification of Activity properties

Specify properties of the selected Activity in the properties specification table, Choose the Expert or Al
options From the Properties drop-down lisk ko see more properties,

Jf'&

TN
[1]]
| L]

% 'El m g & = Historsy :|I=QI [SurPrinter] |+

S o

B-|| Docurnentation/Hyperl = [aj = B B Prnperties:i Al w |[R Cusktomize
- |8 Usage in Diagrarns .
| Attributes Imported Member ~
5 Parks Inherited Member
5 Operations Interface Realization
Signal Receptians Is F'.bstratt D fa|SE
4 Parameters Is Active []False &
Y| Behaviors Is Final Specialization []False
1| Vatiables .|| IsLeaf []False
: Templallze Pararneters Is Read Orly |:| False
: II:TE:' =i : Is Reentrant krue
elations
Tige Is Single Execution []False
-[B| Comstraints Mermber
----- Traceabiiy qrame GUEN [~
| Hame
| The name of the MamedElement.
< WIE |

Figure 48 -- Specification Dialog of PrintSum Activity

(iv) To create an opaque behavior to print the summation value of the two input parameters of type Integer:

1. Right-click the Data model in the containment browser and select New Element > Opaque
Behavior. A new opaque behavior will be created under the Data model.

2. Name it “PrintSumOfIntegers” (Figure 49).

52 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

He Conta.. B Structure 5 Inherit.. £ Diagrams <= Madel ..

Conkainment X

Bz lolnly =

O+ 44

E-E Data
E UL Standard Profile [UML_Standard_Profile. xmi]
E-E sumPrinter
© El-43 Printsum
@ PrinkSuri
- 0 =% 1 Inkeger
- -y 1 Inkeger
%‘g rinkSumCFInkegers
----- @ Code engineering sets

Figure 49 -- PrintSumOfintegers Opaque Behavior in the Containment Browser

3. Add two input parameters of type Integer: (i) a and (ii) b.
(i) Right-click the PrintSumOfintegers opaque behavior and select New Element >

Parameter. Name the created parameter ‘a’ and select Integer as the type of parame-
ter a (Figure 50).

53 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

m Parameter - a

specification of Parameter properties

Specify properties of the selected Parameter in the properties specification table, Choose the Expert ar
&ll options from the Properties drop-down lisk bo see more properkies,

B % B « =

|| ma
[H- Documentation/Hyperlin
~| Inner Elements
4| Relations
1| Tags
1| Constrainks
1| Language Propetties

----- Traceabilicy

Hiskory :| @ a: Integer [PrintSumCfIntegers] V|

a

= 8 | B B
E |24 = = 2

=
Applied Stereotype
Direckion
Element 1D
rulkiplicity
Marne
Cwaner
To Da

3 II| Inkeger [UML Standard Profile::UMLE |, .

Type
The kype of the TypedElement,

P'ru:uperties:|5tandard V|['§C Cuskomize | |

in
_17_0beta_17530432_1233923356737_5...

a
$‘u PrintSumofIntegersi a ; Inkeger, b L.,

Forward

54

Figure 50 -- Specification Dialog of Parameter a

(i) Repeat the steps to create parameter b (Figure 51).

Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

e Conta. ‘B Structure S Inherit.. £ Diagrams <= Madal ..

Containment [E I - ¢
EEESY =
4 gleal v 8

(w2 EEEE

B~ Data
m 1ML Standard Profile [UML_Standard_Profile.xml]
E}E SurnPrinter
© Bl PrinkSum
@ Prink3urm
----- 2 -x Inkeger
: e () -y Inkeger
Ei%u Prink3urmOfInkegers) a : Integer, b Integer)
----- 2 a: Integer
e

----- @ Code engineering sets

Figure 51 -- PrintSumOfintegers Opaque Behavior Containing Parameters a and b in the Containment Browser

(v) To write a script to print the summation of the given integer values:

e Open the specification dialog of the PrintSumOfintegers opaque behavior and write a script in
the Body field (you can use any scripting language that is supported by MagicDraw’s macro
engine, for example, BeanShell, Groovy, JavaScript, Jython, or Jruby). In this example,
JavaScript will be used to print the summation of the given integer values that are referred to by
the parameters a and b; therefore, the script will be: “print(a+b)” (Figure 52).

Activity Simulation

P Opague Behavior - PrintSumQfintegers

Specification of Opaque Behavior properties

Expert or all options From the Properties drop-down lisk bo see more properties,

Specify properties of the selected Opagque Behavior in the properties specification table, Choose the

History: :|$‘H PrintSumOfInteqersi a ; Integer, b : Inkeger) V|

~PrintSumicfIntegers

i (8] [=]

Documentation/Hyperlinks

Epg =2

Pru:uperties:| All

b |[ﬂ Custu:umize]

Usage in Diagrams
Attributes

Parts

Operations

Signal Receptions
Parameters

print{a-+b)|

Ll

Behaviors Class

Template Parameters

Classifier Behavior

[Innet Elements Client Dependency
Relations Collabor ation Use
Tags Context
Constraints Described Use Case
""" Traceahility Docurnentakion 3
| | [P T { E B B 1 S SRS By | ol Tu P En L B Kn Tm In InLn mE B K| —
Body

Specifies the behavior in one or more langquages,

a2 |

Figure 52 -- JavaScript for Printing the Summation of Integer Values

Forveard

56 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

NOTE

If you want use a script language other than JavaScript, specify it in the Language attribute.

Opague Behavior - PrintSumOfintegers &|
Specification of Dpaque Behavior properties - —"
=
Specify properties of the selected Opaque Behavior in the properties specification table, Choose the =
Expert ar all options Fram the Properties drop-down list to see more properties, E :-I
= |

'Eg abe| A = = History :|$‘5 PrintSumCfIntegers & : Integer, b : Integer) V|

izt ~PrintSumCFIntegers

salPrintSumOFInteger si
Bocumentation/Hyperlinks B e 3 B F‘ru:uperties:|.ﬂ.ll Vl[‘x Custamize

B~ o T =l
Usage in Diagrams
Attribubes Is Abstract [Jfalse ~
Parks Is Active [Jralse
Operations Is Final Specialization [false
Signal Receptions 15 Leaf [False
|3 Paramebers Is Reentrant krue 3
Bishaviors Beanshell
Template Parameters
E-[E| Inner Elements D
LB angquage -
Relations i]
Tags i
Conskrainks ;
1 & Inkeqger [PrinkSurmCrInkegers
----- Traceability Memmber 2 ger [_ gers]
@ b Integer [PrinkSumOfIntegers] 4
Language
Languages the bady strings use in the same order as the body strings,
< | > |

The next steps will be to complete the PrintSum activity diagram of the SumPrinter class and add ReadStruc-
turalFeatureAction so that the values of properties x and y, which are owned by the SumPrinter class, can be
read. The values of a and b will later be passed on to the PrintSumOflntegers opaque behavior as the values

of input parameters a and b respectively.

(vi) To complete the activity diagram of the class:

57

1. Drag the PrintSumOfintegers opaque behavior from containment browser to the PrintSum
activity diagram. A new action of PrintSumOflntegers will be created.

2. Name the action “print” (Figure 53).

a 4]

M1 [
| print : PrintSumﬂﬂntegelﬁr |

F.

Figure 53 -- Creating a Print Action by Dragging the PrintSumOfintegers Opaque Behavior to Activity Diagram

Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

3. Add Initial and Activity Final nodes to the activity diagram and connect them to the print action
using a control flow (Figure 54).

a 4]

[1]

. [T
J print : PrintSumDﬂntegelﬁ
- 1 —®

Figure 54 -- Activity Diagram with Initial and Final Activity Nodes

4. Click Action and select the Any Action... diagram toolbar button on the PrintSum activity dia-

gram.
[~51 Activity Diagram | |
() Action - (T Action
[Object Nods v Call Operation Action
"~ Cbject Flow (¢f Opague Action
Zontrol Flow
\-'l:' (1 Any Ackion, ..
[Send Signal Action 5 b
% | Accept Event Ac.. [11 [

7 Time Evert . [print : PrintSumofintegers
."l
& Initial Mode e

i Ackivity Final
& Flow Final

= Decision

Figure 55 -- Selecting Any Action Diagram Toolbar Button

5. Select ReadStructuralFeatureAction in the Select Action Metaclass dialog and click OK
(Figure 56).

[M Select Action Metaclass fz

42 matches Found
E ReadlinkobiectEndGQualifierdction [UML Standard Profile:: UMLZ Mekamodel:: Ackions:: *

E readselfaction [UML Standard Profile: :UMLZ Metarnodel:: Actions: : Interrmediatedction

K ReadStructuralFeaturedction [UML Standard Profile:: UMLE Metamaodel: :Actions: :Inket
B ReadVariabledction [UML Standard Profile: :UMLZ Mekamodel: ackions: : Strockuredack
= ReclassifyObjeckiction 1ML Skandard Profile::UML2 Mekamodel:: Ackions s Connpleked
E reducesction [UML Standard Prafile: s UMLZ Metarodel:: Actions: :Completedctions] —
4 Removestructur alFeaturevaluedction [UML Standard Profile:: UMLZ Metamodel: :Action

E Removevariablevalusaction [UML Standard Profile::UMLE Metamodel:: Ackions:: Struck %
4 I >

Figure 56 -- Selecting ReadStructuralFeatureAction in the Select Action Metaclass Dialog

58 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

6. Click the PrintSum activity diagram to create the action and name it “readX” (Figure 57).

| '«readStructuralFeature» N
readX

a 4]

[1] [11

. J 'print s PrintSumﬂﬂntegerrI:)
1 - @

Figure 57 -- Activity Diagram with readX Action

7. Open the Specification diagram of the readX action (Figure 58).

E Read Structural Feature Action - readX

Specification of Read Structural Feature Action properties

Specify properties of the selected Read Structural Feature Action in the properties specification table,
Chioose the Expert ar All options from the Properties drop-down lisk ko see more properties,

T
’:LLL' ig |
Eq

#

abe ",3 a = Histary | 0 ready [SumPrinker:: PrinkSonm] V|

reads

#1-[8)| Documentation/Hyperli B 'El 'gl B B F‘r-:uperties:| all » |['${ Custl:umize]
B Usage in Diagrams e ——

Ovned Element -
Inner Elements Cianer e PrinkSurm [SumPrinker]

Cualified Mame SumPrinker: :PrintSum;: reads

Realizing Element

Redefined Element

Redefined Mode

Redefinition Conkexk

Result

Specifving Element

Struckural Feature E]
Supplier Dependency —
TaDa

Structural Feature
Structural feature to be read,

Constraints
----- Traceahility

| £

Figure 58 -- The Specification Dialog of readX ReadStructuralFeatureAction

8. Click the Structural Feature ... button to open the Select Property dialog to select the struc-
tural feature (Figure 59).

59 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

[select Property [Q

Select, search for, or create an element

Search far an element by using lisk ar tree views, Tao find an element bype text or [’ f,:i ‘__ o |
wildcard £, 7) into the "Search by name" input field, Search elements by their qualified @ |e l'l—l

names or use camel case when searching if the appropriate mode is enabled. \.-z\

Search by name:

[|
Fa Tree

B El-i B %i 445 matches Found

= List|

T <UMNSPECIFIED =
El-BS] Data [446 matches)
E ML Standard Profile [UML_Standard_Profile,xml] {444 mabchas)
E+E SumPrinter (2 matches)
----- -x 1 Inbeger
e -y 1 Inkeger

mlhlg IEL':' Load

Figure 59 -- .Select Property dialog for select the property x

9. Select property x of the SumPrinter class and click OK. The Select Property dialog will close.

60 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

E Read Structural Feature Action - readX

61

Read Structural Feature Action pins

The Pins node contains a lisk of Read Struckural Feature Action pins and buttons For creating or deleting

them.

'ﬂg abc| A = = Hiskary | 0 reads [SumPrinter::PrinkSum]

Giiit
’uﬂ) |
Ed

O reads

E§|--- DocumentationHyperli g | Aj B B
----- IUsage in Diagrams = -

Inner Elements

Pins

Relations IE(&ction Input Pin
Tags Result S Input Fi
nput Fin
Conskrainks)
----- Traceability value Fin

Figure 60 -- Add new input pin to readX action

10. Select Pins on the left-hand side pane of the Specification dialog. You need to create two
pins for ReadStructuralFeatureAction: (i) the input pin to specify the runtime object of type
SumPrinter whose runtime values that correspond to the properties x and y will be used for

execution, and (ii) the output pin of the type Integer to specify the value read from the structural
feature.

(i) Click the Object button and select Input Pin from the context menu (Figure 60). A
new input pin will be added to the action. Name this pin “self” and select SumPrinter.
as its type, and then click the Back button (Figure 61).

Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

P Input Pin, - self E|

Specification of Input Pin properties

Specify properties of the selected Input Pin in the properties specification table, Choose the Expert or
All options From the Properties drop-down list ko see more properties,

&ﬂ

H
[“_U

B 'El’g o = Histary :
FEo s it

self 1 SumPrinker [SumPrinter::PrintSum: ireads] Y|

R B ey gt IE' @ B EY F‘rn:lperties:|5tandard w |[‘§C Custn:-mize]
Usage in Diagrams ! : i]
Inmet Elerments Applied Sterectype
Relations Element ID _17_0Nbeta_17530432_1288932087740_4. ..
Tags In Skake
Constraints rulkiplicity
----- Traceability Mame s
e = reads [SumPrinter: :PrintSum]
To Do

el

'frpe
The type of the TypedElement.

Figure 61 -- Naming the Input Pin and Selecting Its Type

(ii) Click the Result button and select Output Pin from the context menu (Figure 62).

Name this pin “a@” and select Integer as its type, and then click the Close button (Fig-
ure 63).

62 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

m Read Structural Feature Action - readX ['5__<|
Read Structural Feature Action pins i —-"
.
The Pins node conkains a lisk of Read Structural Feature Action pins and buttons For creating or deleting =
them. = E__:_I
EBE 'ﬂg abc| A = = History :| © ready [SumPrinker::PrinkSum] w ‘
2 ready J Pins
B~ DocumentationiHyperli 7= 8] m E"X

Usage in Diagrams

; =
Inner Elements Ohject & self ; SumPrinter [SumPrinter::Printsu, .
Relations =

Caonstraints ‘B Qutput Pin

Figure 62 -- Adding Output Pin to readX Action

m Output Pin - a

Specification of Output Pin properties

Specify properties of the selected Output Pin in the properties specification table, Choose the Expert or
All options From the Properties drop-down list bo see more properties,

e abe|l A o = Histary :|:EIa:Integer[SumF‘rinter::F‘rintSum::readx] Vl

[= ma 3

B[Documentation/Hyperiin B Al [y B BY F'ru:uperties:|5tandard V|[‘R Custamize | |
-] Usage in Diagrams :

Inner Elements

applied Stereatvpe

v B elations Element ID _17_0Obeta_17530432_1283932166256_8, ..
) Tags rulkiplicity
- Constrainks Mame a
..... Traceability Cwner O ready [SumPrinter: :PrinkSum]
To Do

t(| ¥ II| Integer [UML Standard Profile: :UMLZ .|

Type
The bvpe of the TypedElement.

Figure 63 -- Naming the Output Pin and Selecting Its Type

11. Click the readX action on the activity diagram and select Display Pins on the smart manipula-
tor (Figure 64). The Select Pin dialog will open (Figure 65).

63 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

S
i
L n ,EI
| sreadStructuralF estures E[
| readX
n @ ‘m =
a b
T E m

(print : PrintSumfi=tanac
- L D Pz (@)

o

Figure 64 -- Pins of the Selected Action on Smart Manipulator

X

E Select Pins

o a : Inkeger [SumPrinter::PrintSum::read:]
- & x: Inkeger [SumPrinker::PrintSum::reads]

Clear all Select Al

Figure 65 -- Selecting in the Select Pins Dialog

12. Select all pins and click OK. The Select Pins dialog will close.
13. Connect pin a of the readX action to pin a of the print action (Figure 66).

zelf

[1]

['-xreadS‘tructuralFeaturEx '
readX

F

&
a b

[1]
J 'print H PrintSumﬂﬂntegerrl.? '
& >l —®

Figure 66 -- Activity Diagram Showing the Flow between readX and print Actions

14. Repeat steps 4 to 13 to create a readY action, which is the ReadStructuralFeatureAction,
with the following arrangement:

64 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

e the name of the action is “readY”.
e the structural feature is ‘y’ attribute of the SumPrinter class.
e the name the output pin of readY is ‘b’.

e the output pin b of readY connects to pin b of the print action.

zelf zelf
. [11 . M _
| ereadStructuralF esture: | ereadStructuralF esture:s:
readX read¥
a 4]
a 4]

. J-print: PrintSumOfintegers
o H :]

Figure 67 -- Activity Diagram with readX and readY Actions

(vii) To create a ReadSelfAction to read a runtime object that will be supplied to the input pins of readX and
readY actions:

1. Right-click Any Action on the diagram toolbar of the Activity diagram. The Select Action
Metaclass dialog will open (Figure 68).

m Select Action Metaclass [z|

42 matches Found
E readlinkobiectEndQualifierdction [UML Standard Profile:: UMLZ Mekamodel:: Ackions:: *

B9 ReadSelfaction [UML Standard Profile: :UMLZ Metamodel: s Actions: : IntermediateActio

£ ReadstructuralFeaturesction [UML Standard Profile:: UMLE Mekamodel:: Ackions: : Inker
E Readvariabledction [IUML Standard Prafile: s ML2 Metamodel: :Ackions: :Strockuredbcki
E reclassifyObjectiction [1UML Standard Profile:UMLZ Metamodel:: actions Connpleted
E Reducesction [UML Skandard Prafile::UMLZ Metamodel:: Actions: :Completedctions] —
£ Removestructur alFeaturevaluedction [UML Standard Profile:: UMLE Metamodel:: Action
B RemovevariablevalusAction [UML Standard Profile::UMLE Metamodel:: Ackions:: Struch %
£ | »

Figure 68 -- Select Action Metaclass Dialog

2. Select ReadSelfAction and click OK.
3. Click the PrintSum activity diagram to create an action and name it “readSelf” (Figure 69).

65 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

sread>elfs

| readSelf |
B i’y

zelf zelf
. [T1 _ [.
| ereadStructuralF estures | | wreadStructuralFestures |
readX | read¥
a b
a 4]

N print : PrintSumDﬂntegerrI: i
- g ——@®

Figure 69 -- Activity Diagram with readSelf Action

4. Right-click the readSelf action to open its Specification dialog (Figure 70).

[Read Self Action - readSelf

Read Self Action pins

it
‘[

The Pins node contains a lisk of Read Self Action pins and butkons For creating or deleking them,

(]
1]
|LLL' _

B % abc| 2 gm = Histary :| = readSelf [SumPrinker::PrinkSum] vl

 readself Pins

B DocumentationfHyperlin g B2 B
Usage in Diagrams = ¥ -
E|"' El

Inner Elements Result "® self @ SumPrinker [SumPrinker::PrinkSu. .
----- Relations
..... Tags

----- Zonskraints
----- Traceability

Figure 70 -- Adding Output Pin as a Result Pin of readSelf Action

5. Select Pins on the left-hand side pane of the dialog and add a new output pin named “self” of
type SumPrinter to the Result row.

6. Go to the PrintSum activity diagram and show the output pin of the readSelf action using the
smart manipulator button.

7. Create a Fork Horizontal and connect it to the pins of the actions on the diagrams using an
object flow (Figure 71).

66 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

steadSelfs
readSelf

zelf

zelf zelf

gread=tructuralFestures: gread=tructuralFestures
readX read¥

|3 L

. print : PrintSumOﬂntegErrI:

O

Figure 71 -- A Complete PrintSum Activity Diagram

The final step will be to create an InstanceSpecification whose classifier is the SumPrinter and assign the
values to the slots that corespond to properties x and y. These values will be used during the simulation.

(viii) To create an InstanceSpecification whose classifier is the SumPrinter and assign the values to the slots
that corespond to the properties x and y:

1. Right-click the Data model and select New Element > InstanceSpecification.
2. Name the created InstanceSpecification “instance” (Figure 72).

Fe Conta. ‘B Structure & Inherit.. ¥ Diagrams <> Madel ..

Containrment (LI 4

= I =
=i IR Y B

S [
El-E] Data
E ML Standard Profile [UML_Skandard_Profile,:=mi]
& sumPrinter
- fnstance] |

--%‘3 PrintSurmOFIntegersi a @ Integer, b ; Inkeger)
b @ Code engineering sets

Figure 72 -- The Created InstanceSpecification in the Containment Browser

3. Open the Specification dialog of instance.
4. Click the Classifier field button. The Select Element dialog will open (Figure 73).

Activity Simulation

m Select Elements

68

Select, search for, or create elements s W &
Search For an element by using list ar tree views, To find an element bype text or . l',f_'_ "___ =
wildcard ¢*,) into the "Search by name" input field, Search elements by their qualified 3 I.é l1—|
names or use camel case when searching if the appropriate mode is enabled. Nl

Search by name;
|SumF'rinter |
B2 Tree EE Lisk |
! makch Found
<INSPECIFIED =
| En |’ﬂ| i Load
b Multiple Selection

Figure 73 -- The Select Element Dialog of the Selected Classifier

5. Edit the classifier by selecting the SumPrinter class and click OK.

6. Click Slots on the left-hand side pane of the Specification dialog and select x:Integer (Fig-
ure 74).

7. Click the Create Value button to create a new value of the slot (Figure 74). The Value box will
open (Figure 75).

Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

E Instance 5pecification - instance

specification of instance slots
p £ 9

& slak gives the value or values of a struckural Feature of the instance, Select a slak and click the Create =
Yalue butkon, to create a new value for i, %E__:.I

% IEl lm 'ﬂ = = Hiskary :| = inskance : SumPrinker V|

=1 inskance : SumPrinker ~5loks

G-[B] Du:u:umn.anta.tlcun,l'Hyperlln O I Property:
- sage in Diagrams o =
Deployed Artifacts o W | & x: Integer | —
Inr Elements T Gy Inkeger Select property and click Create Yalue ko
create new value For it,

Felations
Tags

Create Yalue Edit Walue

Figure 74 -- Creating Slot Value of x

69 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

E Instance 5pecification - instance

specification of instance slots o
=
& slak gives the value or values of a struckural Feature of the instance, Select a slak and click the Create 5:5 !
£54
-

Yalue butkon, to create a new value for i,

% IEl lm 'ﬂ = = Hiskary :| = inskance : SumPrinker V|

=1 instance : SumPrinker —Sloks
- DocumentationHyperlin o
o =y (B2 Property:
- || Usage in Diagrams B BE |E Y |Ea perty
| & % Inkeger | (..]

e Ty 0 Inbeger Yalue
2| |

Felations
1| Tags
Canskrainks

Edit Value T (L =

Figure 75 -- Assigning Value to Property x Slot

8. Type, for example, 2 as the value of the property x slot.
9. Repeat the same steps to assign 8 as the value of the property y slot (Figure 76).

Fo Conta.. B Structure & Inherit.. & Diagrams <= Model ..

Conkainment & X

|$ WE I B Y B
EI@ Data
m ML Standard Prafile [UML_Standard_Prafile. xml]

E-E sumPrinker
=8=Wirstancs : SumPrinker

--%‘3 PrintSurmOfInkeqersi a @ Inkeger, b @ Integer)
----- @ Code engineering sets

Figure 76 -- The created Instance Specification with Slot Values in the Containment Browser

The model is now ready to be executed.

70 Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

8.3 Executing Activity

You can add some breakpoints to the model created in 8.2 Creating Model for Activity Execution before execut-
ing it. This section will demonstrate how to suspend the execution at some specific points by using breakpoints.
You can add a breakpoint to an element using either the diagram or browser context menu.

The following example will show you how to add breakpoints to pin a and b of the print action. Once the model
execution has reached these pins, the simulation will be suspended.

To add a breakpoint to an element and execute the model:

1. Right-click an element and select Simulation > Add Breakpoint(s) (Figure 77). The break-
points will be shown in the Breakpoints pane of the Simulation Window (Figure 78).

(activity PrintSum| 5| Printsum U
sreadSelfs
readSelf
zelf
zelf zelf
sreadstructuralF estures greadstructuralFesture:
readX read¥
4]
o
. .[Specification Enter
Symbal(s) Properties. . Alk+Enker
GoTo b
Refackar b
Select in Containment Tree alk+B
Related Elements b
Skereckype b
Edit Campartment b

» | Show Mame
Shiow Stereatypes [

Shiow Conskrainks

Show Tagged Yalues

Show Type

Type » O

Convert bo Obiject 2, Add Breakpoink(s) %
e 3 il

Figure 77 -- Adding Breakpoints to Pin a of print Action

Activity Simulation

@ PrintSum X

RIFEETIL ida-" 17 i 2 & v wid

v|11

[Commaon
=4 Mate A

= N N

4 B
A A aloe v

\be Text Fio . (activity PrintSum| [PrintSum U

B anchor -

< Dependency |
Image Shape

% Diagram Crwverwview
---- Separatar -
=51 Activity Ciagram
(1 &ny Ackio,,, w ™
[Object Node
~2 Cbiect Flow

s, Control Flow

[+ Send Signal &...

% | Accept Event...

3 Time Event

@ Initial Node

(areadStructuralFeatures
readX

print : PrintSumDﬂntegeﬁ;;

 areadSelfs
readSelf

areadStructuralF eatures:
readY

i Ackivity Final
% Flow Final

<= Decision

= Merne bel| AN

|#¥1 Information Flows | €

£% Simulation

Simulation

1 B x

@ »r=E=E0H))_Iia}l'i':gloo Animation speed:

j Triggers:

£8% Sessions X

g Wariables % - Breakpoints x

. Console

o]
o o2

Enabled

Zondikion Suspend

on Entry
on Entry

Figure 78 -- Breakpoints Pane in Simulation Window

You can open the Simulation Window by clicking Window > Simulation on the main menu (Fig-

ure 79).

72

Copyright © 2010-2011 No Magic, Inc.

Activity Simulation

Window | Help

Messages Window Chel-+M

Cankainment
Skruckure

Inhetitance

o Zo &0 &7 o

Diagrarms

== [Model Extensions

Dacumentation

Zoam

B & m

Properties

Reset Windows Configuration Chrl+Shift -+

Sirnulation

Math Console

PrinkSumm

1

Close All Diagrams But Current: Ckrl+Shift+F4
Clase Al Diagrarms Crel+Alk+F4

Figure 79 -- Opening Simulation Window from the Main Menu

2. Right-click instance in the containment browser and select Simulation > Execution (Fig-
ure 80) to execute the model from instance, which is the InstanceSpecification of the Sum-
Printer classifier.

Activity Simulation

Fe Cont.. & Struc.. S Inher.. # Diag.. <= Mode..
Containment (EIN ¢
Bl (glely s
E-E Data

E 1ML skandard Profile [UML_Standard_Profile.xmi]
E-E sumPrinker

== Ninstance ; !
L =z Mew Element]
- S y=s8 Mew Relation b
_____ SO e
Specification Enter
Go To b
Refactar]
Related Elements]
Skereotype b
Renarme Fz
| Copy CErl+iC
Copy LURL
[}
Wk Chrl+
i Delete Delete
Create Symbol Chrl+5hift+y
Find...
Generate Repart, .. b
Sirnulation P |[|€3 Execute Chrl-Alk+3
Vesls 2 =, Add Breakpoinkis)
L]

Figure 80 -- Executing InstanceSpecification

3. A new simulation session will be created and displayed in the Sessions Pane of the Simula-
tion Window (Figure 81). The symbol of elements that have breakpoints attached will be high-
lighted in yellow (default) (Figure 82).

Activity Simulation

23 Simulation

Simulation

(9 P =EO0 »elklee)

Bg ¥ariables « -° Breakpoints =

R
Mame Value
EE sumPrinter SumPrinter@1d7 2535

{E} Sessions X

O w0 Inkeger 2
b v Integer &

Figure 81 -- Simulation Session in the Sessions Pane of Simulation Window

4. Click the Run Execution button on the Simulation Window toolbar. Cameo Simulation Toolkit
will animate the execution on the PrintSum activity diagram. The execution will be suspended
when pin a or b of the print action is activated. You can hover your mouse pointer over the

active element to see its runtime value.

(activity PrintSum | 5| Printsum u

|' ' sreadselfs ' |

| readSelf |

IL‘i‘self
Af

zelf self
(areadStructuralFestures | (sreadStructuralFestures. |
readX | read¥

Figure 82 -- The Execution is Suspended when Pin a is Activated

5. Click the Resume Execution button on the Simulation Window toolbar to continue the execu-
tion (Figure 80).

75 Copyright © 2010-2011 No Magic, Inc.

Parametrics Simulation

£33 Simulation

Simulation

O bz EOo »lalele

{E} | Resume Execution |

Figure 83 -- Resume Execution Button in Simulation Window

6. The execution will be suspended again when pin b is activated. Click Resume Execution to
continue the execution. In the Simulation Console of the Simulation Window, you can see
the printed value of 10, which is the summation between 2 and 8.

£ Simulation
Simulation JE I 4
— = | A .
& p = [B > &3 B2 157 Animation speed: J Triggers:
% Sessions ¥ g wariables % | o Breakpoints ¥ . Console x
o)
INFO : Eeventj Fire activit\;f=F‘rintSum action=prink ~

IMFD : Dpague behavior evaluation, Context is | Opague Behavior
PrintSurnOf Inteqers

HNFO 10 |
IMNFO Instance Specitication instance execution is terminated, AR

=

Figure 84 -- Simulation Console of Simulation Window Showing the Printed Result of Summation

NOTE If you do not want to display the animation (silent execution), you can create Execution Config-
uration to customize the execution by selecting instance as the executionTarget and set silent
to true. See Section 2.2 for more information.

9.1 About Parametics Engine

Cameo Simulation Toolkit comes with the Parametrics Engine plugin to enable you to calculate the mathemati-
cal model of a system. The system on which the parametric simulation can be performed, must be modeled by
SysML. Therefore, it must be defined as a SysML block that contains constraint properties as its owned attri-
butes or nested properties.

The Parametric Engine will use the Mathematical Engine to solve the mathematical and logical expressions
that are defined as the constraints of Constraint Blocks. The default Mathematical Engine, which comes with
Cameo Simulation Toolkit, is Math Console.

Parametrics Simulation

NOTE e The SysML profile is required for a parametric execution.

e A Parametrics simulation evaluates the expressions in one direction by specifying inputs to get
outputs, for example, for the expression z = x +y, the values of x and y must be given to
evaluate z.

e Binding Connectors (the connectors applied with the «BindingConnector» stereotype) must be
used to connect Value Properties to Constraint Parameters, Value Properties to Value
Properties, or Constraint Parameters to Parameters.

9.2 Adapting Model for Parametric Execution

9.2.1 Understanding the Flow of Parametric Execution

The Parametric engine in the current version of Cameo Simulation Toolkit can solve expressions in a one-way
direction only. The variables that are defined on the left-hand side of an expression will be considered as the
output parameters, whereas the variables on the right-hand side as the input parameters. The values of the
input constraint parameters must be specified in order to evaluate the values of the output constraint parame-
ters.

When you start the parametric execution on a SysML block, the Parametric Engine will execute the constraint
and nested constraint properties of the block. The order of the execution of the constraint properties will depend
on the expressions. If an input constraint parameter of the constraint property is connected to an output con-
straint parameter of another constraint property, the constraint property that requires the input values will be
executed after the one that provides the values to the output constraint parameters

In the SysML Parametric Diagram of the test_parametrics.mdzip sample (Figure 85), which is located in the
<md.install.dir>/samples/simulation/Parametrics/ directory, you can see that the order of the execution of con-
straint properties will be: s1, s2 and s3 respectively.

Parametrics Simulation

par [Block] &[2§ & U

a: Real ¥ Real acanatraints
:| =1 : Sum . Resl
v Real {z=ey) £ TEE
b : Real]
x: Real
¢ : Real y: Real wconstraints 7 Real
52 : trigonometry
{Z=sinlx +) * cos(y)}
x: Real
v . Real gcanstraint:
d : Real
2 :l 53 : MuRtiply
|—|{Z=><*‘:-“}
7 : Real
e : Real

Figure 85 -- SysML Parametric Diagram in the test_parametrics.mdzip Sample

9.2.2 Typing Value Properties by Boolean, Integer, Real, Complex, or Their Subtypes

SysML provides the QUDV library to create different value types. You can use these value types to type the
value properties that are defined in a SysML model, which can be used for the parametric execution. However,
they must be inherited from the basic SysML value types which are Boolean, Integer, Real, and Complex. You

can see the example in the CylinderPipe.mdzip sample.

bdd [Package] Values [Yalues J_J

v alueTypes
Real
gvalueTypes: gvaleTypes: gvalueType:s gWalueTypes
p ') m M
whvBluaTypes whvBluaTypes whBlueTypen walueTypew
unit= cubicMeterPerkilogram unit= cubicMeter | [unit= 0@ metre unit= @kilogram

elnits svalueTypes slinits T
us$PerKilogram unit$ usg: UE;p
: DerivedUnit avalueTypen DeriveduUnit
. . wvluE Ty pen
Lnit= oo UsEPerkilograrm unit= m@USE

Figure 86 -- Value Types Inherited from Real

Parametrics Simulation

par [Block] RawhaterialSupplier [RawehaterialSupplier J_J
rawMat : RawMaterial e pipes : Pipe [1.7]
gcanstraint: - Real
density : p volume : v | e1: Addition |: thickness : m
| i | ‘ i | {z=xy}
v Real
% Real v : Real |: | radius : m
|_| |_| [Real
sconstraint: t: Real t: Real W'
el : Multiplication I_l I_l
{z=dingldiag(=Pdiag(y)} wconstraints wconstraint:
|_| e2 : CircleArea e3: CircleArea
z Resl {o=PI*diagldiagir *diac(r))} {o=Pl*diagdiag(r*diaglri)}
unitPrice : unit$ mass: M l_l ’ |_|
c: Real c: Real
¥ Real |3-': Real ¥ Real
¥ Real v . Real
L] U L] v Resl
|_| |_| goonstraints gronstraints
zConstraints ed : Multiplication €5 : Multiplication
€9 : Multiplication {z=dliag(diag(x) diag(y)) {Z=cliagldiagrx Poiag(y)]}
iz=diaglcisal Fdisg(y))]]
|_| J z: Real z : Real
z: Real z: Real v : Real
[] . x: Real []
price : US§ = :I goonatraints:
el : Sum 6 : Subtracti
{z = sum(x-—c Real[1.4] :I EELLS T THCIO N 3
z: Redl {z=xy))

Figure 87 -- SysML Model Using the Value Types Defined in Figure 86

9.2.3 Using Binding Connectors

SysML provides a binding connector to connect elements whose values are bound together. The Parametric
engine uses the binding connector to distinguish between the connector that represents a physical connection
and the one that bounds the values. Therefore, you can use a binding connector to connect a value property to
a constraint parameter, and a constraint parameter to another constraint parameter. You cannot used it to con-
nect a value property to another value property if neither of them is connected to a constraint parameter,
because it cannot specify the flow of the parametric execution direction. To do this, you need to first create a
constraint block to assign the operation, and then insert a binding connector.

Parametrics Simulation

par [Block] &[[E% A lJ

a: Real b : Real

par [Block] &[[E§ A]/J

- Resl constraints - Real
a: Real *- e sd: Assign ¥ A

=y

b : Real

Figure 88 -- Using a Constraint Property Instead of Directly Binding Value Properties using Binding Connector
9.2.4 Creating InstanceSpecification with Initial Values

An InstanceSpecification of the SysML block is required to start the parametric execution on a SysML model.
The initial values, which will be used for simulation, must be specified as the slot values of the InstanceSpecifi-
cation. You also need to specify the values of the value properties that are connected to the input constraint
parameters, otherwise, the default values will be used. The default value of the value properties whose type is
Number or its subtypes, is zero. The default value of the value properties, which are boolean, is false.

bdd [Maodel] Data| @ Instance of the & u
ghlock:
1
hlocks =
constants a: i
=1 Sum
22 trigonametry a="1.248"
=3 0 hultiply bh="0 28"
values c="3141459"
a: Real d="z0"
b Real — up
o Real 2="0
d: Real
e: Real

Figure 89 -- InstanceSpecification with Initial Values in the test_parametrics.mdzip Sample

You can also use the InstanceSpecification of a SysML block to store the values resulting from the parametric
execution if the execution configuration is used, by defining the resultinstance of the «ExecutionConfig» stereo-
type in the InstanceSpecification (Figure 90).

Parametrics Simulation

bdd [Package] Execution Configurations [@ Execution Configurations U

sExecutionConfigs 4&
Hormal Execution

sExecutionConfigs 4&
Silemt Execution

wBrecution Confige
executionTarget= =a

resultinstance = =1a
silent=true

wBrecution Confige
executionTarget= =a

resultinstance = =1a
silent=false

Figure 90 -- Using InstanceSpecification to Save the Result Values from Simulation

NOTE You need to create InstanceValues for the slots which correspond to the part properties, refer-
ence properties, or shared properties (InstanceValue), even though they contain empty slot val-
ues of the value properties. Otherwise, you cannot save the result values to the

InstanceSpecification. You need to create the slots before saving the result values.

9.2.5 Working with Multiple Values

According to the multiplicity of property elements, a runtime object cannot contain multiple runtime values that
correspond to a property. If the property is bound to constraint parameters, which are the input of an expres-
sion, then a list of values will be passed on to the mathematical engine to solve the expression. The mathemat-
ical and logical expressions, which are defined in the constraint blocks, must support the use of multiple values.

9.2.5.1 Modifying Expressions to Support Multiple Values

Since a matrix column will be constructed from a list of input values in the Built-in Math Solver, the mathemati-
cal expression must be written in a form that supports matrix variables.

If you refer to the Multiply constraint block in the test_parametrics sample, you will see that the mathematical
expression of the constraint block is: z = x * y. If four values are passed on to the mathematical engine for each
x or y parameter, then two column matrices (4x1 matrices) will be constructed and used to solve the expres-
sion. However, the column matrices cannot solve the expression because the matrix dimensions do not agree
(the number of column of x must be equal to the number of row of y). To solve this, you need to rewrite the
expression. You need to change the column matrices to diagonal matrices before the multiplication operation
starts by changing the expression to: z = diag(diag(x) * diag(y)).

bdd [Package] Constraints [Constraints lJ

T gconstraints gronztraints ganztraints sconstraints
CircleArea Addition Subtraction Multiplication Sum
. constaints consaints i c-:n.:?st.'a.ints_ constaints
{e=Prdiagidialr Fdiagir)} {z=x+y} Tl tz=diag(diaglx) diagy1)} iz = sum(x)y
b pamaneters padmeters pamneters pammeters
7o FEe] I x: Real % Real % Real x: Real[1.%]
C'. Feal v . Real v . Real v . Real 7z Real
) z: Real z: Real z: Real

Figure 91 -- Constraint Blocks Expressions Used with Multiple Values in CylinderPipe.mdzip Sample

Parametrics Simulation

9.2.5.2 Constructing Values List from Complex Aggregation Structure

If you have an InstanceSpecification of the SysML block that contains multiple slot values and if the slot values
are the InstanceValues whose InstanceSpecifications also contain multiple slot values and so on, up to the slot
values, which correspond to the value properties that are connected to the constraint parameters. You need to
pass all of these values on to the mathematical engine.

If this is the case, the Parametric engine will first collect all of the values that correspond to the value properties
that are connected to the constraint parameters, and then create a list of values and pass it on to the Mathe-
matical engine. The order of the values will depend on the order of the slot values. To ensure that the values
order will remain the same, you need to specify the IsOrder attribute of the Property elements, which has a
non-singular multiplicity, to true. In the SysML Parametric diagram of the CylinderPipe.mdzip sample (Fig-

ure 87), and the InstanceSpecification of the SysML block “RawMaterialSupplier” in Figure 92, the list of the
values for the mathematical engine to solve the expression are as follows:

o length = {1.0, 2.25, 12}
e radius = {0.1, 0.25, 0.25}
o tickness = {0.002, 0.002, 0.005}

zhlocks E
rawhMaterialSupplier : RawMaterialSupplier

pipes = pipel, pipe, pipel
rawhiat = steel

shlocks = | zhlocks 0 whlocks = |
pipe1 : Pipe pipe? : Pipe pipel : Pipe
length = 1.0{unit = metre} length = 2.25{unit= metre} length = 1 2{unit = metre}
radius = 0.1{unit = metre} radius = 0.248{unit = metre} radius = 0.25{unit= metre}
thickness = 0.002unit= metre} || thickness = 0.002{unit= metre} | | thickness = 0.005{unit= metre}

zhlocks = |
steel : RawMaterial

density ="73E0"{unit = cubicketerPerkilogram}
unitPrice = "0.809" unit= LUIS§Perkilogram?

Figure 92 -- InstanceSpecification of Complex Aggregation Structure

9.3 Running Parametric Simulation

This section will use the test_parametrics.mdzip sample, located in the <md.install.dir>/samples/simulation/
Parametrics/ directory, to demonstrate how to run a Parametrics simulation.

To run a Parametrics simulation:

1. Start the Parametric Simulation Engine (you can select Block A, InstanceSpecification a:A, or
the Execution Configuration class symbol (on the Execution Configurations Block Definition Dia-
gram). Either:

(i) right-click the element symbol and select Simulation > Execute in context menu
or

Parametrics Simulation

(ii) select the element symbol and click the Execute button O in the Simulation Window
toolbar. (If you click the Execute button without selecting any element and the active diagram is
a SysML Parametric diagram, then the classifier, which is the context of the active SysML Para-
metric diagram, will be used as the element to be executed.)

NOTE

In the case that the element to be executed is a Classifier, the InstanceSpecification must be
specified. The slot values defined in that particular InstanceSpecification will be used as inputs
for the simulation, and placeholders as outputs. If there is only one matching InstanceSpecifica-
tion found in the project, then it will automatically be used for the simulation. Otherwise, the
Select Element dialog will open for you to select an InstanceSpecification (Figure 93).

83

Select Element f'>__<|

E-E Data
. artivities
E MO Cuskomization For SwsML [MD_cuskomization_for_S
E QDY Library [MD_customization_For_SwskL.mdzip)
E 1ML Standard Profile [UML_Skandard_Profile . xmi]
E Matrix Templates Profile [Matrix_Templates_Profile.mi]
E simulationProfile [simulationProfile. mdzip]
BB SvshL [SystL Profile.mdzip]
=

Figure 93 -- Selecting Instance Specification in the Select Element Dialog

2. Once the Parametric Simulation Engine has been started, the runtime structure of the executed
classifier will be shown in the Variables Pane (Figure 94). You can modify the values in the
value column of the Variables Pane.

Copyright © 2010-2011 No Magic, Inc.

84

Parametrics Simulation

a: Real % : Real [«canstraints
:| s1: Sum - Resl
v : Real fz=seyy |0 MER
b : Real]
% Real
¢ : Real v : Real «Constraint: 7 : Real
) s2 : trigonometry
{Z=sinx + v * cos(y1}
»: Real
v . Real gronztraint:
d: Real
. | s3:Muttiply
|—| {Z=x*y}
Z: Real
e : Real
2% Simulakion
Sirnulation el X
(O PEEO » 8kl ®)
£} Sessions X £z ¥Yariables =
Bl) 2=z
Mame ‘alue
BEA A@16C557C ~
-.[1 a: Real 1.25
----- [0 b Real n.z2a
----- [- Real 314159 =
----- [0 d: Real 2.0
----- [0 e: Real n w
< | >
Figure 94 -- Initializing Parametric Simulation Engine with a Selected Classifier
3. Click the Run button >

to start the simulation. The Parametric Simulation Engine will simu-
into the corresponding slot of the selected InstanceSpecification automatically (Figure 95).

late your Parametric model (with animation on your diagram), and input the calculation result

Copyright © 2010-2011 No Magic, Inc.

Parametrics Simulation

par [Block] A[[B% & U

a: Real % Real j gConstraints
| s1: 5um I
Y Feal .-j {I=x+ ¢ Real
b : Real :] t
xRl
: =traint: : Real
: Real v Real £C0an
; y 52 @ trigonometry
{Z=sinlx + %) * cos(y)}
¥ Real
v : Real zoonstraints
d : Real
3 =3 : Multiply
T=x*y
z : Real
e : Real }
R=| walues = 1 DO2I3667A07E501E |

Figure 95 -- Simulation with Parametric Simulation Engine

9.4 Retrieving Simulated Values

You can save the simulated values in an InstanceSpecification, which is specified in the resultinstance of the
«ExecutionConfig» stereotype. Therefore, you can save the parametric simulation results to the InstanceSpeci-

fication only when the ExecutionConfig is selected for the execution.

zhlock: 0 ghlock: =

a:A a:A

a="1248" a="1.258"

h="028" bh="0.28"

c="314159" c="3.1414549"

d::E.EI" d="20"

g="" e="149493335674075501R"
before after

Figure 96 -- Slot Value before and after Simulation with Parametric Simulation Engine

85

Copyright © 2010-2011 No Magic, Inc.

Parametrics Simulation

9.5 Executing Parametric Simulation from Activity

The Parametric engine provides an API for a parametric execution with the runtime object of a classifier. The
runtime object of the classifier will be passed to the APl as an argument and the engine will execute the given

object. With this API, you can use a scripting language for the parametric execution, for example:

ct object);

com.nomagic.magicdraw.simulation.parametrics.ParametricsEngine.executeObject (Obje

An argument object is the runtime object of a classifier to be executed. You can obtain this particular runtime
object by using some UML actions such as ReadSelfAction, ReadStructuralFeatureValueAction, and Val-
ueSpecificationAction, or by using the Cameo Simulation Toolkit Open API. Figure 97 shows the Parametric
activity diagram in the CylinderPipe.mdzip sample. The action:ExecuteParametric is used to run the parametic
execution. The runtime object, which will be executed, is obtained from the value specification action rawMate-

rialSupplier.

“act [&ctivity] runParametric [runParametric J_J

Body

"com.nomagic.madicdraw. simulation.parametrics. ParametricsEngine.executeOhject{ohjecty”

I Type

«hlocksRawhaterialSupplier

il I
action : ExecuteParametrjc obiject

|
save ! SEUEUﬂlueTﬂlnstﬂl'lcrﬁ

gvaluezpecification:
rawMaterialSupplier |

instance instarce evaluespecification:
|k [j rawMaterialSupplier |

I |

|
| |

W
| ® Type
| ¢metaclasszInstanceSpecification
|

Body

"com.nomagic.magicdraw. simulation.utils SimHelper. saveValueTolnstancelobject, instance)

Figure 97 -- Using Action to Execute Parametric

Interaction Between Engines

9.6 Sample Projects

The Parametric Simulation sample projects are available in the <md.install.dir>/samples/simulation/Para-
metrics directory. SysML Parametric diagrams and InstanceSpecifications, which can be used for the simula-
tion as described in Step 1.of Section 9.2.5, are as follows:

(i) The test parametrics.mdzip sample demonstrates a simple mathematical model of block A.

(i) The CylinderPipe.mdzip sample demonstrates how to deal with multiple values. It shows the
calculation for the cost of raw materials that will be used to manufacture the cylinder pipes. It
also demonstrates the use of OpaqueBehaviorAction to execute the parametric.

(i) The ActParintegrate.mdzip sample demonstrates the use of OpaqueBehavior to execute the
parametric.

(iv) TradeTransformModel.mdzip
(v) Financial.mdzip

(vi) SCARA manipulator.mdzip demonstrate the use of Parametric Simulation to evaluate the
position of end-effector of the SCARA manipulator from the given angles of actuators.

NOTE

All of the sample projects of the Parametric Simulation Engine include the Execution Configura-
tions package that contains two ExecutionConfig elements for normal and silent execution. You
can select this ExecutionConfig class to start the Parametric Simulation Engine.

You can use all of the Simulation engines at the same time.

e SendSignalAction can send a signal to a trigger transition in an active State Machine (using
Activity Simulation to control State Machine Simulation). Stopwatch is an example of such
collaboration.

e Activation of the State can invoke entry/do/exit Activities. testDoActivity.mdzip and
test_regions.mdzip are examples of such collaboration.

10.1 Stopwatch Sample

You can execute and then control the Stopwatch sample (StopWatch.mdzip), located in the <md.install.dir>/
samples/simulation/StopWatch directory, by either (10.1.1) manually handling the StopWatch or (10.1.2)
Activity Diagram.

10.1.1 Manual Execution

To execute and control the Stopwatch sample manually:

1. Open StopWatch.mdzip.

2. Right-click the stopwatch_config ExectionConfig (in the Config Simulation Configuration Dia-
gram) and then select Simulation > Execute in the context menu.

3. In the Simulation Window, press the Run Execution button to start the execution.

4. The Stopwatch mockup panel will then open. Also, the StopWatch is started with the “ready”
state.

5. Either (i) click the start button in the mockup panel, or (ii) select the context (StopWatch
[ready]) in the Variables Pane, and then select the start signal in the Triggers: combo box in

Mathematical Engine

the Simulation Window to initiate the timer. The following buttons / signals can be used in dif-
ferent states:
e The stop button / signal will stop the timer if the current state is either running or
paused.
e The reset button / signal will reset the timer to 0 if the current state is stopped.
e The split button / signal will stop displaying the elapsed time, but the timer still runs
in background, if the current state is running.
e The unsplit button will redisplay the elapsed time if the current state is paused.

NOTE You need to close all of the current project control windows before switching to another project,
or close the project or MagicDraw to ensure that the tool is fully functioned.

10.1.2 Controlling Execution with Activity Diagram

If you do not want to trigger events manually, you can model the events instead. Activity diagrams allow you to
model the SendSignalActions sequence and send Signals to any target Objects. Cameo Simulation Toolkit
allows you to execute this particular activity and sends the signals to other active Engines. Therefore, whenever
you start a State Machine Simulation, the transitions will be automatically triggered.

To execute the Stopwatch sample and control it by an Activity diagram:

1. Open StopWatch.mdzip.

2. Right-click the Stopwatch Testcase ExectionConfig (in the testcase Simulation Configuration
Diagram) and then select Simulation > Execute in the context menu.

3. In the Simulation Window, press the Run Execution button to start the execution.

4. The Testcase scenario Activity diagram will then be executed. Once the context created by
the Create Object createObject is passed to the startObjectBehavior element, the Stopwatch
mockup panel will then open, and a state machine execution will start.

5. You will see how the Activity diagram is executed; each SendSignalAction will be highlighted in
red, the transition will be triggered, and the StopWatch system will start, pause, or stop accord-
ing to the signals sent by each SendSignalAction.

In order to perform a Parametrics Simulation on a SysML Parametrics Diagram, you will need a Mathematical
Engine to evaluate the mathematical and logical expressions defined in the Constraints of Constraint Blocks

which type the Constraint Properties on the diagram.

11.1 Math Console

Math Console in Cameo Simulation Toolkit is used to communicate with the Mathematical engine. Cameo Sim-

ulation Toolkit is designed to be used with various mathematical engines such as MATLAB®', OpenModeIicaz,
etc. You can create a new mathematical engine as a MagicDraw plugin and register with Cameo Simulation

Toolkit.

1. MATLAB® is a registered trademark of The MathWorks, Inc.
2. Currently not supported.

Mathematical Engine

The current Cameo Simulation Toolkit version comes with a Built-in Math Solver.

To use a selected mathematical engine in Cameo Simulation Toolkit:

1. Click Options > Environment on the main menu to open the Environment Options dialog.

2. Select Simulation in the left-hand side pane and select a mathematical engine from the Math-
ematical Engine field (Figure 98).

Environment Options

Simulation options

m' —
_hange warious Simulation options and configurations. & —-
ol
m —_——
----- (5| General Simulation
----- =%, Diagram = —
----- e Browser = A = =L X
----- oo Tearmwork, =
----- g@ L fctive Color W RGE[255, 0, 0]
----- 9 Update visited Calor W RGE [0, 255, 0]
----- £ Netwark Ereakpaint Color RGE [255, 255, 0]
----- £ Keyboard =
----- {F Plugins

_____ & Resources Check Model Before Execution true

_____ PY Path Yariables ; Defaulk Language ECMASCrpL

-5 Speling |8

..... [Launchers i Use FUML Decision semantics [Ffalse

----- E Experience =

----- [E] External Tools (W Mathematic Engine Eiui E-im Makh Salver
----- T Eclipse UMLZ (v1,x) XM

----- = Edlipse UMLZ (v2,x) XMI Mathematic Engine

----- T Edlipse UMLZ {v3.x) %ML

----- £r+ Enterprise Architeck Import
----- 125 Macros

----- Report Wizard

[Reset to Defaults]

Figure 98 -- Selecting a Mathematical Engine in the Environment Options Dialog

You can start or stop the mathematical engine by clicking the Start Math Engine or Stop Math Engine button
(Figure 99).

89 Copyright © 2010-2011 No Magic, Inc.

Mathematical Engine

- 45 Simulation

Simulakion

(@ b =ED

» & i 0@)

{i) Math Console l

OE &

= x=10;
= ow=20;
= 2=wy
z=230.0

Bx

Figure 99 -- Math Console to Communicate with Mathematical Engine

Button

Name

Function

Start Math Engine

To start the Mathematical engine selected in the Envi-
ronment Options dialog.

Stop Math Engine

To stop the Mathematical engine.

Clear

To clear all text displayed in the Math Console.

11.2 Exchanging Values between Cameo Simulation Toolkit and
Mathematical Engine

11.2.1 Exchanging values between Slot and Mathematic Environment

Cameo Simulation Tookit allows you to exchange values between slots and the Mathematical engine through
the diagram context menu on slot (Figure 100).

90

Copyright © 2010-2011 No Magic, Inc.

Mathematical Engine

Containment = X
LT H] I I -
g g5 @ E ? E
E-Ea:h A
..... @
L@ b ="0) Mesw Elemnent b
..... @ C= "3
(D d="3
LB e ="0) Specification Enter
|22 | Definikion Refackar »
Insktance q
r — Select in Structure Tree
Related Elements]
Tools]
Skereotype]
| Copy Chrl4+iC
Copy URL
[
wE |k Chrl4
i Delete Celete
Create Symbol Chrl4+3hifE+
Generate Report...]
Sirmulation]
Yalue Exchange L Impork Yalue from Engin&
-
Export Walue to Engine

Figure 100 -- Context menu to Exchange Values with Mathematical Engine

To import a value from a mathematical engine to a slot:

1. Right-click the slot to which you will export a value and select Import Value from Engine. The
Value Exchange dialog will be open (Figure 101).

[A value Exchan... E|

YWariable Mame

2

I (94 '\J [Cancel

Figure 101 -- Value Exchange Dialog

2. Specify the variable name whose value you want to import and click OK.

Mathematical Engine

To export a value from a slot to a Mathematical engine:

1. Right-click the slot whose value you want to export and select Export Value to Engine. The
Value Exchange dialog will open.

2. Specify the variable name to which you will export the value and click OK.

11.2.2 Export Runtime Value to Mathematical Engine

During model execution, the runtime values which are shown in the Variable Pane could be exported to the
Mathematical engine using context menu on the selected row as shown in Figure 102. Therefore, you can ana-
lyze these exported runtime values with Mathematica engine’s functions, e.g. plot.

E Variables
Pz Yariables =
A S
rarmne Yalue
E-E YalueHolder YalueHolder@1c4bz274
= m value : Real [00.%] [10, 20, 30, 40, 504
i 10 Add Value
20
3t Export vwalue to Math Engine
40 %
50 -
Select in Containment Tree Alk+B

Figure 102 -- Show the context menu for exporting the runtime value to Mathematical engine.

To export the selected runtime value(s) to a Mathematical engine

1. Right-click the row that contains runtime value to be exported and select Export value to Math
Engine. The Value Exchanger will open.

2. Specify the variable name to which you will export the value and click OK.

11.3 Built-in Math Solver

Built-in Math Solver is the default mathematical engine that comes with Cameo Simulation Toolkit. This engine
can solve simple mathematical and logical expressions. You can use Built-in Math Solver to:

e evaluate the mathematical and logical expressions defined in the Constraints of Constraint
Blocks for Parametrics Simulation on a SysML Parametrics Diagram.

e evaluate the mathematical and logical expressions in Math Console.

11.3.1 Using Built-in Math Solver in Math Console

You can type generic mathematical equations directly in the Math Console, for example:
x =10;

Mathematical Engine

y = 20;
Z =Xty

z = 30 (the calculation result) will be displayed in the Math Console.

NOTE The calculation results for the expressions that end with a semicolon (;) will be set to the corre-
sponding variable in the Built-in Math Solver environment. It will not be displayed in the Math
Console.

Or, if you type, for example, in the Math Console:

a = true;
b = false;
c=a&b;

The calculation result (false) will be assigned to the variable ¢, but it will not be displayed in the Math Console.
If an expression does not contain any assignment operator, the calculation result will be set to the variable
‘ans’, for example:

x=10;

20 + x

ans = 30 will be displayed in the Math Console.
You can calculate multiple expressions at the same time by typing a semicolon (;) at the end of each expres-

sion, for example:

x=10;y=20;z=x+y;a=z/x

a = 3 will be displayed in the Math Console.

11.3.2 Variables

The variables (operands) that can be used in Built-in Math Solver must conform to the following naming con-
ventions:

e The characters in a variable name must be a-z, A-Z, or 0-9.
e The first character must not be a number.
e Variable name must not be Constants (“E” or “PI")

e Variable names must not be Functions (“sqrt”, “sin”, “cos”).

e Variable names must not be Operators (“+7, “-”, “*” “/").

11.3.3 Values

Valid values that can be used in an expression are: (11.3.3.1) Real Number, (11.3.3.2) Complex Number,
(11.3.3.3) Boolean, and (11.3.3.4) Matrix.

11.3.3.1 Real Number
x = 3.14159
y=2

11.3.3.2 Complex Number
c=3+4i

Mathematical Engine

d=1.25+0.25i

NOTE The 'i' character in an expression can be parsed as the imaginary unit or character of a variable
name. If 'i' is placed after a number and the next character is neither an alphabet nor number, it
will be parsed as an imaginary unit (otherwise parsed as a variable). For example:

eca= 1i ‘' is parsed as an imaginary unit.

ech=i ‘" is parsed as a variable.

e cx = 3.25i ‘i’ is parsed as an imaginary unit.

e cy =4i4 ‘i’ is parsed as the first character of a variable name 'i4'

11.3.3.3 Boolean
a = true
b = false

11.3.3.4 Matrix
U=11.0, 2.0, 3.0; 4.0, 5.0, 6.0; 7.0, 8.0, 9.0]
A = [true; false; false; true]

NOTE | e You can add a matrix to the built-in math solver by the following syntax (a
semi-colon is used as row separator and comma or space is used as a
comma separator). From the expression in 11.3.3.4 above:

U=[1.0, 2.0, 3.0; 4.0, 5.0, 6.0; 7.0, 8.0, 9.0]

1.0 2.0 3.0
= 14.05.0 6.0
7.0 8.0 9.0

A = [true; false; false; true]

true
4 = false
false

true

e You can refer to a matrix element by specifying the row index and column
index in round brackets after a matrix name, for example (from U above):
U(1,1)is 1.0
U(2, 3)is 6.0

e You can also refer to a matrix element by specifying only one index in round
brackets after a matrix name. If this is the case, the matrix will be considered
as a column-major order matrix. The elements on the given column-major
order index will be returned. For example (from U above):

U(2)is 4.0
u(6) is 8.0

Mathematical Engine

11.3.4 Constants
Constant Value
E The real value that is closer than any other to e, the base of the natural logarithms.

PI The real value that is closer than any other to pi, the ratio of the circumference of a
circle to its diameter.
11.3.5 Operators

NOTE |e x and y represent numerical values or variables.
e m n and p represent integer values or variables.
e a and b represent boolean values or variables.
e U and V represent matrices of numerical values.
e A and B represent matrices of boolean values.

11.3.5.1 Arithmetic Operators

Operator Operator Name Syntax
+ Addition x+y

U +V (UandV are mxn matrices)
- Subtraction X-y

U+V (UandV are mxn matrices)

Multiplication

x*y
U*V (U is mxn matrix and V is nxp matrix)

/ Division xly

% Modulus m%n
U +V (U and V are mxn matrices of integer values)
This operator operates element-wise on matrices.

! Factorial m!

A Power xNy

b) Assignment Operators

Operator Operator Name Syntax

= Assignment X=y
a=b

u=v

Mathematical Engine

11.3.5.2 Comparison Operators

Operator Operator Name Syntax
> Greater x>y
u>v
< Less X<y
u<v
>= Greater or Equal X>=y
uU>=v
<= Less of Equal X<=y
U<=Vv
== Equality X==y
==b
U==v
1= Inequality xl=y
al=b
ul=v

NOTE |All comparison operators operate element-wise on matrices, for example:

A=[1;2;3]
B =13; 2; 1]
Then

A>B is [false false true];

11.3.5.3 d) Boolean Operators

Operator Operator Name Syntax

! NOT la
1A

& AND a&b
A&B

OR alb

A|B

A XOR (exclusive OR) |a"b
A"B

NOTE |All boolean operators operate element-wise on matrices, for example:
A = [true; true; false; false];
B = [true; false; true; false];
Then
A&B is [true; false; false; false];

Mathematical Engine

11.3.6 Functions

NOTE | e x andy represent real values or variables.
e ¢ and d represent complex values or variables.
e m and n represent integer values or variables.

e U represent matrix of values.

For the function that operates element-wise on matrices, a matrix can be
passed to the function as its argument, for example:

X=[1,-2,3;-45-6;7-89];

Y = abs(X)
result:

Y=[123;456;7809]

Function Syntax Function
abs abs(x) To return the absolute value of x or the complex modulus of
abs(c) c.
This function operates element-wise on matrices.
acos acos(x) To return the arc cosine of an angle, in the range of 0.0
acos(c) through pi. All angles are in radians.
This function operates element-wise on matrices.
acosd acosd(x) To return the inverted cosine of a given value, expressed in
acosd(c) degree.
This function operates element-wise on matrices.
acosh acosh(x) To return the inverted hyperbolic cosine of a given value.
acosh(c) This function operates element-wise on matrices.
acot acot(x) To return the inverted cotangent of a given value.
acot(c) This function operates element-wise on matrices.
acotd acotd(x) To return the inverted cotangent of a given value, expressed
acotd(c) in degree.
This function operates element-wise on matrices.
acoth acoth(x) To return the inverted hyperbolic cotangent of a given value.
acoth(c) This function operates element-wise on matrices.
acsc acsc(x) To return the inverted cosecant of a given value.
acsc(c) This function operates element-wise on matrices.
acscd acscd(x) To return the inverted cosecant of a given value, expressed
acscd(c) in degree.
This function operates element-wise on matrices.
acsch acsch(x) To return the inverted hyperbolic cosecant of a given value.
acsch(c) This function operates element-wise on matrices.
asec asec(x) To return the inverted secant of a given value.
asec(c) This function operates element-wise on matrices.

Mathematical Engine

Function Syntax Function
asecd asecd(x) To return the inverted secant of a given value, expressed in
asecd(c) degree.
This function operates element-wise on matrices.
asech asech(x) To return the inverted hyperbolic secant of a given value.
asech(c) This function operates element-wise on matrices.
asin asin(x) To return the arc sine of an angle, in the range of -pi/2
asin(c) through pi/2.
This function operates element-wise on matrices.
asind asind(x) To return the inverted sine of a given value, expressed in
asind(c) degree.
This function operates element-wise on matrices.
asinh asinh(x) To return the inverted hyperbolic sine of a given value.
asinh(c) This function operates element-wise on matrices.
atan atan(x) Returns the arc tangent of an angle, in the range of -pi/2
atan(c) through pi/2.
This function operates element-wise on matrices.
atan2 atan2(x, y) To return the arc tangent of an angle, in the range of -pi
atan2(U, V) through pi.
atan2(U, V) returns a matrix the same size as U and V con-
taining the element-by-element, inverse tangent of the real
parts of U and V.
atand atand(x) To return the inverted tangent of a given value, expressed in
atand(c) degree.
This function operates element-wise on matrices.
atanh atanh(x) To return the inverted hyperbolic tangent of a given value.
atanh(c) This function operates element-wise on matrices.
ceil ceil(x) To return the smallest (closest to negative infinity) value that
is not less than the value of x and is equal to a mathematical
integer.
This function operates element-wise on matrices.
conj conj(c) To return the conjugated value of c.
This function operates element-wise on matrices.
cos cos(x) To return the trigonometric cosine of an angle.
cos(c) This function operates element-wise on matrices.
cosd cosd(x) To return the cosine of a given value, expressed in degree.
cosd(c) This function operates element-wise on matrices.
cosh cosh(x) To return the hyperbolic cosine of a given value.
cosh(c) This function operates element-wise on matrices.
cot cot(x) To return the cotangent of a given value.
cot(c) This function operates element-wise on matrices.
cotd cotd(x) To return the cotangent of a given value, expressed in
cotd(c) degree.
This function operates element-wise on matrices.

Mathematical Engine

Function Syntax Function
coth coth(x) To return the hyperbolic cotangent of a given value.
coth(c) This function operates element-wise on matrices.
count count(U) To return the number of elements of a given matrix
csc csc(x) To return the cosecant of a given value.
csc(c) This function operates element-wise on matrices.
cscd cscd(x) To return the cosecant of a given value, expressed in
cscd(c) degree.
This function operates element-wise on matrices.
csch csch(x) To return the hyperbolic cosecant of a given value.
csch(c) This function operates element-wise on matrices.
diag diag(U) To return a diagonal matrix and diagonals of a matrix.
diag(U, m) If U is a row matrix or a column matrix of n elements, this
function will return a square matrix of order n+abs(m), with
the elements of U on the kth diagonal.
e k = 0 represents the main diagonal.
e k > 0 above the main diagonal.
e k < 0 below the main diagonal.
If U is a square matrix, this function will return a column
matrix formed by the elements of the kth diagonal of U.
exp exp(x) To return the Euler's number e raised to the power of a or c.
exp(c) This function operates element-wise on matrices.
eye eye(m) To return the identity matrix of dimension mxm.
factorial factorial(m) To return the factorial of m value.
floor floor(x) To return the largest (closest to positive infinity) value that is
floor(X) not greater than the value of x and is equal to a mathemati-

cal integer.
This function operates element-wise on matrices.

IEEEremainder

IEEEremainder(x,

To compute the remainder operation in two arguments as

y) prescribed by the IEEE 754 standard.
imag imag(c) To return the real value of the imaginary part of a given com-
plex number.
This function operates element-wise on matrices.
invert invert(U) To return the invert matrix or pseudo invert matrix of a given
matrix.
e If the given matrix is a square matrix, the invert matrix of U
will be returned using the LU factorization.
e |f the given matrix is not a square matrix, the pseudo
inverted matrix will be returned using the QR factorization.
linsolve linsolve(U, V) X = linsolve(U,V) solves the linear system U*X =V using the
LU factorization with partial pivoting when U is a square
matrix
In In(x) To return the natural logarithm (base e) of a given value.
In(c) This function operates element-wise on matrices.
log log(x) To return the natural logarithm (base e) of a given value.

log(c)

This function operates element-wise on matrices.

Mathematical Engine

Function Syntax Function
log10 log10(x) To return the logarithm base 10 of a given value.
log10(c) This function operates element-wise on matrices.
log2 log2(x) To return the logarithm base 2 of a given value.
log2(c) This function operates element-wise on matrices.
max max(x, y) To return the greater of two given values.
max(c, d) e max(U) returns the largest element of a given matrix.
max(U) e max(U, V) returns a matrix the same size as U and V with
the largest elements taken from rV. The dimensions of
max(u. V) Uan v mus be the same.
mean mean(U) To return mean or average value of a given matrix.
e U is row or column matrix: mean(U) returns the mean
value of all elements in the given matrix.
e U is 2-D matrix: mean(U) returns row matrix that contains
the mean value of each column of the given matrix.
median median(U) To return median value of a given matrix.
e U is row or column matrix: median(U) returns the median
value of all elements in the given matrix.
e U is 2-D matrix: median(U) returns row matrix that contains
the median value of each column of the given matrix.
min min(x, y) To return the smaller of two given values.
min(c, d) e min(U) returns the smallest element of a given matrix.
min(U) e min(U, V) returns a matrix the same size as U and V with
min(U, V) the smallest elements taken from U or V. The dimensions
of U and V must be the same.
ones ones(m, n) To return the mxn matrix of all ones.
pow pow(X, Yy) To return the value of the first argument raised to the power
pow(U, c) of the second argument.
pow(c, d) This function operates element-wise on a given matrix U.
random random() To return a real value with a positive sign, greater than or
equal to 0.0 but less than 1.0.
real real(c) To return the real value of the real part of a given complex
number.
This function operates element-wise on matrices.
rint rint(x) To return the value that is closest in value to an argument
and is equal to a mathematical integer.
This function operates element-wise on matrices.
round round(x) To return the closest value to an argument and is equal to a
mathematical integer.
This function operates element-wise on matrices.
sec sec(x) To return the secant of a given value.
sec(c) This function operates element-wise on matrices.
secd secd(x) To return the secant of a given value, expressed in degree.
secd(c) This function operates element-wise on matrices.
sech sech(x) To return the hyperbolic secant of a given value.

sech(c)

This function operates element-wise on matrices.

Mathematical Engine

Function Syntax Function
sin sin(x) To return the trigonometric sine of an angle.
sin(c) This function operates element-wise on matrices.
sind sind(x) To return the sine of a given value, expressed in degree
sind(c) This function operates element-wise on matrices.
sinh sinh(x) To return the hyperbolic sine of a given value.
sinh(c) This function operates element-wise on matrices.
size size(U) To return the size of a given matrix. If only matrix is passed
size(U, m) to the function as an argument, the returned value is the
' matrix of size 1x2. The first element is the number of row
and the second element is the number of column.
If the second parameter (m) is specified, this function will
return the size of the m™ dimension of a given matrix as a
scalar value. The second argument can be 1 or 2 (1 for row
size, 2 for column size). For example:
Uu=[,2,3;4,5,6];
size(U) is [2, 3]
size(U, 1) is 2
size(U, 2) is 3
sort sort(U) To sort the elements of a given matrix in ascending or
sort(U, ‘descend’) descending order. If the second argument is specified with
’ ‘ascend’ or ‘descend’, the elements will be ascending sorted
or descending sorted respectively. If this function is called
without second argument, the elements are sorted in
ascending order.
e U is row or column matrix: sort(U) and sort(U, ascend) sort
all elements in the given matrix.
e U is 2-D matrix: std(U) and std(U,flag) sort elements in
each column of the given matrix.
sqrt sqrt(x) To return the correctly rounded positive square root of a dou-
sqrt(c) ble value.
This function operates element-wise on matrices.
std std(U) To return standard deviation of a given matrix. The 'flag’
std(U, flag) argument can be 0 or 1. It specifies the method for calculat-
' ing the standard deviation. If flag = 0, the standard deviation
is normalized by N-1. If flag = 1, the standard deviation is
normalized by N. Where N is number of data. The value of
flag will be O by default.
e U is row or column matrix: std(U) and std(U, flag) returns
the standard deviation of all elements in the given matrix.
e U is 2-D matrix: std(U) and std(U,flag) returns row matrix
that contains the standard deviation of each column of the
given matrix.
sum sum(U) To return the summation of all elements in matrix U.
tan tan(x) To return the trigonometric tangent of an angle.
tan(c) This function operates element-wise on matrices.
tand tand(x) To return the tangent of a given value, expressed in degree.

tand(c)

This function operates element-wise on matrices.

Mathematical Engine

Function Syntax Function
tanh tanh(x) Returns hyperbolic tangent of the given value.
tanh(c) This function operates element-wise on matrices.
toDegrees toDegrees(x) To convert an angle measured in radians to an approxi-
toDegrees(c) mately equivalent angle measured in degrees.

This function operates element-wise on matrices.

toRadians toRadians(x) To convert an angle measured in degrees to an approxi-

toRadians(c) mately equivalent angle measured in radians.

This function operates element-wise on matrices.

transpose transpose(U) To return the transposition of the given matrix

zeros zeros(m, n) To return the mxn matrix of all zeros.

11.3.7 Built-in Math Solver API for User-Defined Functions

Built-in Math Solver provides the API for the user to create the user-defined functions. These functions can be
used in mathematical or logical expressions of constraint elements. To create the user-defined function, you
have to create a new MagicDraw plugin. Then, create a Java class that implements the UserDefinedFunction
interface. Finally, register the created class to the built-in math solver.

You can see the MagicDraw OpenAPI UserGuide.pdf in the <md.install.dir>/manual directory for the infor-
mation about how to create a new MagicDraw plugin.

11.3.7.1 Understanding UserDefinedFunction interface

Cameo Simulation Toolkit provides the Java interface, which is UserDefinedFunction interface, for creating the
user-defined functions in built-in math solver. It has 3 methods that must be implemented in the Java class.

String getName()

This method returns name of the user-defined function. It will be used for calling to the user-
defined function in mathematical expression.

boolean isValidinputParameters(List<Value> parameters)

This method will be called by built-in math solver for validating the input parameters before
perform function operation. The ‘parameters’ are the input parameters which are passed to the
user-defined function. If all of them are valid, this method returns true. Otherwise, false is
returned.

Value performFunction(List<Value> parameters)

This method will be called by built-in math solver for perform the user-defined function operation.
The ‘parameters’ are the input parameters which are passed to the user-defined function. The
implemented code for calculation the result value from the given input parameters should be
placed in this method.

For example, the user-defined fucntion for polynomial value evaluation from the given polynomial coefficient
and the value that polynomial will be evaluated.

So, we create a new Java class which is named with “PolyvalFunctionDescriptor”. It must implements the
UserDefinedFunction interface.

Mathematical Engine

public class PolyvalFunctionDescriptor implements UserDefinedFunction {
public static final String = "polyval";
@Override
public String getName () {
// Return name of the function
return PolyvalFunctionDescriptor. ;
}
@Override
public boolean isValidInputParameters (List<Value> parameters) {
// This function requires two input parameters
if (parameters.size() == 2) {

// The first parameter must be the value node that contains a matrix of com-
plex values.

if ((parameters.get (0) instanceof Value) && (((Value)parameters.get(0)).isMa-
trix())) |

// This matrix must be row matrix or column matrix

ComplexMatrix A = ((Value)parameters.get(0)).getMatrix();
if ((A.getRowCount () == 1) || (A.getColumnCount() == 1)) {
// The second parameter must be the value node that contains a complex
value.
if ((parameters.get (1) instanceof Value) && (((Value)parame-
ters.get(l)) .isComplex())) {

return true;

}
return false;
}
@Override
public Value performFunction (List<Value> parameters) throws Exception {
// Get the polynomial coefficient matrix
ComplexMatrix A = ((Value)parameters.get(0)).getMatrix();
// and get the value x

Complex x = ((Value)parameters.get(l)) .getComplex();

// Obtain the order of polynomial n (the number of elements of p is n+l).
Therefore,

int n = A.getElementCount () - 1;

// Create complex value for storing result of calculation
Complex result = new Complex (0.0, 0.0);
for (int 1i=0; i<=n; i++) {
// Get i-th order coefficient.
Complex ai = A.getElement(n - 1i);
// Get the value of ai*x"i
Complex tmp = ComplexMathHelper.multiply(ai, ComplexMathHelper.pow(x, (dou-
ble)i));
// Add to result.
result = ComplexMathHelper.add(result, tmp);
}
// Create a value node that contains the result of calculation.

return new Value (result);

103 Copyright © 2010-2011 No Magic, Inc.

Mathematical Engine

11.3.7.2 Register user-defined funtion to Built-in Math Solver using SimpleMathEngine class

The SimpleMathEngine class represents the built-in math solver. The Java class which implements the
UserDefinedFunction interface must be registered to this class when the created plugin is initialized.

For example, if the class UDFSamplePlugin is inherited from Plugin then:

package com.nomagic.magicdraw.simulation.udfsample;
import com.nomagic.magicdraw.plugins.Plugin;

import com.nomagic.magicdraw.simulation.expsolver.mathengine.SimpleMathEngine;

public class UDFSamplePlugin extends Plugin {
@Override
public void init () {

SimpleMathEngine.registerUserDefinedFunction(new PolyvalFunctionDescrip-
tor());

}

@Override
public boolean close() {

SimpleMathEngine.unregisterUserDefinedFunction(PolyvalFunctionDescrip-
tor.name);

return true;

@Override
public boolean isSupported() {

return true;

11.4 Using MATLAB® as a Mathematical Solver

Cameo Simulation Toolkit can use MATLAB®, which is installed on the local machine, for solving mathematical
expressions.

NOTE | The current version of Cameo Simulation Toolkit can integrate with MATLAB®
only on Microsoft Windows and Mac OS 10.6 (Snow Leopard) platform. This fea-
ture cannot be used on Linux.

11.4.1 Setting up system for calling MATLAB® from Cameo Simulation Toolkit

Microsoft Windows 32-bit and 64-bit

1. Install MATLAB® to Microsoft Windows.

2. Register MATLAB® component to Microsoft Windows by calling “matlab /regserver” in com-
mand prompt window.

e Press Win + R to open Run dialog

e Type “cmd” in open combo box and click OK button to open command prompt
window.

Mathematical Engine

e Type “matlab /regserver” and enter to register MATLAB® component to window.

AWINDOWS\system 32cmd. exe

C:x»matlabh Aregserver

Figure 103 -- Register MATLAB® Component using Command Prompt Window.

3. Add path of MATLAB® bin and bin/win32 (or bin/win64 for Microsoft Windows 64-bit) folder to
the Path environment variable.

e Double-click System in Control Panel to open the System Properties dialog.
Select Advanced tab.

System Properties E]E

Systemn Restore Automatic Updates Remote
General Comnputer Mame Hardware Advanced

“'ou must be logged on as an Adminiztrator to make most of these changes.
Performance

Yizual effects, processor scheduling, memany uzage, and wvirtual memon

Settings

|dzer Profiles

Dezktop settings related to your logon

Settings

Startup and Recovery

Systemn startup, system failure, and debuagging infarmation

Settings

| Environment VW ariables | [Error Reporting]

[OF.][Cancel]

Figure 104 -- System Properties Dialog for Setting Environment Variables

Mathematical Engine

106

e Click Environment Vairables button to open the Environment Variables dialog.

Environment Yariables

Izer wariables For kritsana_u

Yariable Yalue
CLASSPATH Ci\Program Files\MovosoftC2 I Bintc2r. ..
Path CProgram FilesiMowvasaftyZ2 B TP, ..
TEMP C\Documents and Settingsikritsana_ol, ..
TMP CDocuments and Settingsikritsana_ol, ..
| mew || Edt || Delete |

Syskem variables

Yariable Yalue R
05 Windows_NT

PATHEXT (DO, EXE; BAT:.CMD; WES; WEE;.J5; ...
PROCESSOR_A,., x86
PROCESSOR_ID,.. x86 Family & Model 15 Stepping 11, Gen,.. ¥

mew || Ed L\\Q[Delete |

[Ok H Cancel]

Figure 105 -- Environment Variables Dialog for Setting System Path Variable.

e Select Path in System vairables group and click Edit button to open the Edit System
Variable dialog.

e Insert path to MATLAB® bin and bin/win32 folder (or bin/win64 for Microsoft
Windows 64-bit) at the begin of Variable value, e.g. “C:\Program
Files\MATLAB\R2010b\bin;C:\Program Files\MATLAB\R2010b\bin\win32;".

Edit System Variable

Yariable name: | Path |

Yariable value: | C:Program FiIes'l,M.ﬁ.TL.ﬁ.B'I,REEIlIIII:u'l,I:uin;C:'I,F‘rl

[Ok %J[Cancel]

Figure 106 -- Edit System Variable

e Click OK to all opened dialog.
4. Restart Microsoft Windows.

Copyright © 2010-2011 No Magic, Inc.

Mathematical Engine

Mac OS 10.6 (Snow Leopard)

1. Install MATLAB® to Mac OS 10.6
2. Make Finder to show all files by calling the following command in Terminal:

o $ defaults write com.apple.finder AppleShowAllFiles TRUE
e $ killall Finder
3. Add DYLD_LIBRARY_PATH variable to Mac OS
e Create empty text file with name launchd.conf in /etc folder
e Open it with text editor, e.g. TextEdit, and put the following text (all text must be in a
single line):
setenv DYLD_LIBRARY_PATH /Applications/MATLAB_R2010b.app/bin/maci64: /Applications/
MATLAB_R2010b.app/runtime/maci64
e Save text file with the name launchd.conf to desktop.
e Move the launchd.conf to /etc folder

4. Create link to MATLAB® executable file in /usr/bin if it does not exist. By using Terminal, call the
following commands:

e $ cd /usr/bin
e $In -s /Applications/MATLAB_R2010b.app/bin/matlab matlab
5. Reset Finder by calling the following commands in Terminal:
o $ defaults write com.apple.finder AppleShowAllFiles FALSE
e $ killall Finder
6. Restart Mac OS.

11.4.2 Selecting MATLAB® as Mathematical Solver for Cameo Simulation Toolkit

You can switch the mathematical solver to MATLAB® by setting the Mathematical Enigne field in the environ-
ment option to MATLAB® (Figure 107).

e Select Options > Environment in main menu bar. The Environment Options dialog will open.
e Select Simulation in the left pane.

e In Mathematic Engine, select MATLAB® from drop-down list.

e Click OK.

Action Languages

Environment Options @

simulation options A
ange various Simulation options and configurations, L
h i Sirnlati ki d fi i o
&
m —_——
""" B General Simulation
----- =2, Diagram ;
----- e Browser bR =1 = =Y B3
----- oy Teamwork =
""" g@ W5 Active Color M RiGE [255, 0, 0]
----- % Update visited Calar W RiGE [0, 255, O]
""" R Metwark Breakpaint Calar R&E [255, 255, 0]
----- @ Kevboard =
..... Flugi
& Plugins Check Model Before Execution krue
----- =) Resources Default L S
----- PY Path Variables |: erault Language crp
- Spelling =
..... [Launchers Use FUML Decision semantics [False
----- E Experience =
..... [F] External Tools (M Mathematic Engine |M.ﬁ.TL.ﬁ.B b
..... 155 Macros - - Built-in Math Salver
_____ Repart Wizard Mathematic Engine
----- 2 <irnulation
[Reset bo Defaulks]

Figure 107 -- Setting MATLAB® as Mathematical Engine in Environment Options

You can use multiple languages as action languages in the expressions anywhere in a model. Cameo Simula-
tion Toolkit supports Javascript, Beanshell, Groovy, and Jython by default. You can also download and plug
other JSSR233 compatible language implementations. Mathematical expressions can be solved using external
math solvers, for example, MATLAB® if the integrators present. Such integrators will be provided in the subse-
quent release(s) of Cameo Simulation Toolkit.

Any value specification in a model (like guards, constraints, decisions, default values, opaqueBehaviors) can
have the opaque expressions defined using an action language. The languages that are supported include:

e Javascript

e Beanshell

e Groovy

e Jython

e JRuby

e OCL

Action Languages

e Java binaries
e Math (see 11. Mathematical Engine)
e Other additional downloadable JSR-223 script engines (see https://scripting.dev.java.net/)

	Contents
	1. Getting Started
	1.1 Introduction to Cameo Simulation Toolkit
	1.2 Key Features
	1.3 Installation

	2. Model Execution
	2.1 Simulation by Executing Elements
	2.1.1 Behaviors
	2.1.2 Class
	2.1.3 Diagram
	2.1.4 Instance Specification

	2.2 Simulation by Executing the Execution Configuration

	3. Execution Configuration
	3.1 ExecutionConfig Stereotype
	3.2 Execution Log
	3.3 User Interface Prototyping
	3.4 UI Modeling Diagram Execution
	3.5 ActiveImage and ImageSwitcher

	4. Animation
	4.1 Active and Visited Elements
	4.2 Customizing Animation Colors

	5. Simulation Debugging
	5.1 Understanding Simulation Sessions
	5.2 Simulation Debuger
	5.3 Simulation Console
	5.3.1 Console Pane
	5.3.2 Simulation Information
	5.3.3 Simulation Log File

	5.4 Runtime Values Monitoring
	5.4.1 Variables Pane
	5.4.2 Runtime Object created from InstanceSpecification
	5.4.3 Exporting Runtime Objects to InstanceSpecification

	5.5 Breakpoints
	5.5.1 Adding Breakpoints
	5.5.2 Removing Breakpoints

	6. Validation and Verification
	7. State Machine Simulation
	7.1 Supported Elements
	7.2 Adapting Models for State Machine Simulation
	7.2.1 Defining Trigger on Transition
	7.2.2 Using Guard on Transition
	7.2.3 Behaviors on Entry, Exit, and Do Activity of State

	7.3 Running State Machine Execution
	7.4 Sample Projects
	7.4.1 test_regions.mdzip
	7.4.2 test_timers.mdzip
	7.4.3 test_guard.mdzip

	8. Activity Simulation
	8.1 About Activity Execution Engine
	8.2 Creating Model for Activity Execution
	8.3 Executing Activity

	9. Parametrics Simulation
	9.1 About Parametics Engine
	9.2 Adapting Model for Parametric Execution
	9.2.1 Understanding the Flow of Parametric Execution
	9.2.2 Typing Value Properties by Boolean, Integer, Real, Complex, or Their Subtypes
	9.2.3 Using Binding Connectors
	9.2.4 Creating InstanceSpecification with Initial Values
	9.2.5 Working with Multiple Values

	9.3 Running Parametric Simulation
	9.4 Retrieving Simulated Values
	9.5 Executing Parametric Simulation from Activity
	9.6 Sample Projects

	10. Interaction Between Engines
	10.1 Stopwatch Sample
	10.1.1 Manual Execution
	10.1.2 Controlling Execution with Activity Diagram

	11. Mathematical Engine
	11.1 Math Console
	11.2 Exchanging Values between Cameo Simulation Toolkit and Mathematical Engine
	11.2.1 Exchanging values between Slot and Mathematic Environment
	11.2.2 Export Runtime Value to Mathematical Engine

	11.3 Built-in Math Solver
	11.3.1 Using Built-in Math Solver in Math Console
	11.3.2 Variables
	11.3.3 Values
	11.3.4 Constants
	11.3.5 Operators
	11.3.6 Functions
	11.3.7 Built-in Math Solver API for User-Defined Functions

	11.4 Using MATLAB® as a Mathematical Solver
	11.4.1 Setting up system for calling MATLAB® from Cameo Simulation Toolkit
	11.4.2 Selecting MATLAB® as Mathematical Solver for Cameo Simulation Toolkit

	12. Action Languages

